{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:25:31Z","timestamp":1726230331454},"publisher-location":"Cham","reference-count":19,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031441943"},{"type":"electronic","value":"9783031441950"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44195-0_19","type":"book-chapter","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T08:04:08Z","timestamp":1695283448000},"page":"221-232","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Transforming Limitations into\u00a0Advantages: Improving Small Object Detection Accuracy with\u00a0SC-AttentionIoU Loss Function"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4911-276X","authenticated-orcid":false,"given":"Mingle","family":"Zhou","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1449-223X","authenticated-orcid":false,"given":"Changle","family":"Yi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0507-5576","authenticated-orcid":false,"given":"Min","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7592-8944","authenticated-orcid":false,"given":"Honglin","family":"Wan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7896-4833","authenticated-orcid":false,"given":"Gang","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7195-3413","authenticated-orcid":false,"given":"Delong","family":"Han","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,22]]},"reference":[{"key":"19_CR1","unstructured":"Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020)"},{"key":"19_CR2","doi-asserted-by":"crossref","unstructured":"Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers (2020)","DOI":"10.1007\/978-3-030-58452-8_13"},{"key":"19_CR3","unstructured":"Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers (2021)"},{"key":"19_CR4","unstructured":"Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding YOLO series in 2021 (2021)"},{"key":"19_CR5","unstructured":"He, J., Erfani, S., Ma, X., Bailey, J., Chi, Y., Hua, X.S.: Alpha-IoU: a family of power intersection over union losses for bounding box regression (2022)"},{"key":"19_CR6","doi-asserted-by":"crossref","unstructured":"Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design (2021)","DOI":"10.1109\/CVPR46437.2021.01350"},{"key":"19_CR7","unstructured":"Li, J., et al.: Next-ViT: next generation vision transformer for efficient deployment in realistic industrial scenarios (2022)"},{"key":"19_CR8","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows (2021)","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"19_CR9","unstructured":"Prathima, G., Lakshmi, A.Y.N., Kumar, C.V., Manikanta, A., Sandeep, B.J.: Defect detection in PCB using image processing. Int. J. Adv. Sci. Technol. 29(4) (2020)"},{"key":"19_CR10","doi-asserted-by":"crossref","unstructured":"Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression (2019)","DOI":"10.1109\/CVPR.2019.00075"},{"key":"19_CR11","unstructured":"Xu, S., et al.: PP-YOLOE: an evolved version of YOLO (2022)"},{"key":"19_CR12","unstructured":"Xu, X., Jiang, Y., Chen, W., Huang, Y., Zhang, Y., Sun, X.: DAMO-YOLO: a report on real-time object detection design (2023)"},{"key":"19_CR13","doi-asserted-by":"publisher","unstructured":"Yang, L., Zhong, J., Zhang, Y., Bai, S., Li, G., Yang, Y., Zhang, J.: An improving faster-RCNN with multi-attention ResNet for small target detection in intelligent autonomous transport with 6G. IEEE Trans. Intell. Transp. Syst., 1\u20139 (2022). https:\/\/doi.org\/10.1109\/TITS.2022.3193909","DOI":"10.1109\/TITS.2022.3193909"},{"key":"19_CR14","unstructured":"Yu, G., et al.: PP-PicoDet: a better real-time object detector on mobile devices (2021)"},{"key":"19_CR15","doi-asserted-by":"publisher","unstructured":"Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: UnitBox: an advanced object detection network. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 516\u2013520 (2016). https:\/\/doi.org\/10.1145\/2964284.2967274","DOI":"10.1145\/2964284.2967274"},{"issue":"18","key":"19_CR16","doi-asserted-by":"publisher","first-page":"3690","DOI":"10.3390\/rs13183690","volume":"13","author":"T Zhang","year":"2021","unstructured":"Zhang, T., et al.: SAR Ship Detection Dataset (SSDD): official release and comprehensive data analysis. Remote Sensing 13(18), 3690 (2021). https:\/\/doi.org\/10.3390\/rs13183690","journal-title":"Remote Sensing"},{"key":"19_CR17","doi-asserted-by":"crossref","unstructured":"Zhang, Y.F., Ren, W., Zhang, Z., Jia, Z., Wang, L., Tan, T.: Focal and efficient IOU loss for accurate bounding box regression (2022)","DOI":"10.1016\/j.neucom.2022.07.042"},{"key":"19_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TIM.2022.3181927","volume":"71","author":"W Zhao","year":"2022","unstructured":"Zhao, W., Kang, Y., Chen, H., Zhao, Z., Zhai, Y., Yang, P.: A target detection algorithm for remote sensing images based on a combination of feature fusion and improved anchor. IEEE Trans. Instrum. Meas. 71, 1\u20138 (2022). https:\/\/doi.org\/10.1109\/TIM.2022.3181927","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"19_CR19","doi-asserted-by":"publisher","unstructured":"Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34(07), pp. 12993\u201313000 (2020). https:\/\/doi.org\/10.1609\/aaai.v34i07.6999","DOI":"10.1609\/aaai.v34i07.6999"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44195-0_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T08:07:08Z","timestamp":1695283628000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44195-0_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031441943","9783031441950"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44195-0_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"22 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Heraklion","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"947","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"426","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"type of other papers accepted : 9 Abstract","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}