{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:18:48Z","timestamp":1726229928192},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031441912"},{"type":"electronic","value":"9783031441929"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-44192-9_14","type":"book-chapter","created":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T05:01:41Z","timestamp":1695272501000},"page":"169-180","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Towards Background and\u00a0Foreground Color Robustness with\u00a0Adversarial Right for\u00a0the\u00a0Right Reasons"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2378-5376","authenticated-orcid":false,"given":"Fl\u00e1vio Arthur O.","family":"Santos","sequence":"first","affiliation":[]},{"given":"Maynara Donato","family":"de Souza","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6421-9747","authenticated-orcid":false,"given":"Cleber","family":"Zanchettin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,22]]},"reference":[{"key":"14_CR1","doi-asserted-by":"crossref","unstructured":"Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 456\u2013473 (2018)","DOI":"10.1007\/978-3-030-01270-0_28"},{"key":"14_CR2","doi-asserted-by":"crossref","unstructured":"Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168\u2013172. IEEE (2018)","DOI":"10.1109\/ISBI.2018.8363547"},{"key":"14_CR3","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"14_CR4","doi-asserted-by":"publisher","unstructured":"Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2\u20137, June 2019 (Volume 1: Long and Short Papers), pp. 4171\u20134186. Association for Computational Linguistics (2019). https:\/\/doi.org\/10.18653\/v1\/n19-1423","DOI":"10.18653\/v1\/n19-1423"},{"key":"14_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.cosrev.2021.100379","volume":"40","author":"S Dong","year":"2021","unstructured":"Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 100379 (2021)","journal-title":"Comput. Sci. Rev."},{"key":"14_CR6","unstructured":"Dosovitskiy, A., et al.: An image is worth $$16 \\times 16$$ words: transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3\u20137 May 2021. OpenReview.net (2021). https:\/\/openreview.net\/forum?id=YicbFdNTTy"},{"key":"14_CR7","doi-asserted-by":"publisher","unstructured":"Du, M., Liu, N., Yang, F., Hu, X.: Learning credible deep neural networks with rationale regularization. In: Wang, J., Shim, K., Wu, X. (eds.) 2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, 8\u201311 November 2019, pp. 150\u2013159. IEEE (2019). https:\/\/doi.org\/10.1109\/ICDM.2019.00025","DOI":"10.1109\/ICDM.2019.00025"},{"key":"14_CR8","unstructured":"Erion, G.G., Janizek, J.D., Sturmfels, P., Lundberg, S., Lee, S.: Learning explainable models using attribution priors. CoRR abs\/1906.10670 (2019). http:\/\/arxiv.org\/abs\/1906.10670"},{"issue":"3","key":"14_CR9","doi-asserted-by":"publisher","first-page":"4257","DOI":"10.1109\/LRA.2021.3064284","volume":"6","author":"F Fuchs","year":"2021","unstructured":"Fuchs, F., Song, Y., Kaufmann, E., Scaramuzza, D., D\u00fcrr, P.: Super-human performance in gran Turismo sport using deep reinforcement learning. IEEE Robot. Autom. Lett. 6(3), 4257\u20134264 (2021). https:\/\/doi.org\/10.1109\/LRA.2021.3064284","journal-title":"IEEE Robot. Autom. Lett."},{"key":"14_CR10","unstructured":"Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2018)"},{"key":"14_CR11","unstructured":"Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7\u20139 May 2015, Conference Track Proceedings (2015). http:\/\/arxiv.org\/abs\/1412.6572"},{"key":"14_CR12","unstructured":"Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24\u201326 April 2017, Conference Track Proceedings. OpenReview.net (2017). https:\/\/openreview.net\/forum?id=BJm4T4Kgx"},{"key":"14_CR13","doi-asserted-by":"publisher","unstructured":"Liu, F., Avci, B.: Incorporating priors with feature attribution on text classification. In: Korhonen, A., Traum, D.R., M\u00e0rquez, L. (eds.) Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July\u201312 August 2019, Volume 1: Long Papers, pp. 6274\u20136283. Association for Computational Linguistics (2019). https:\/\/doi.org\/10.18653\/v1\/p19-1631","DOI":"10.18653\/v1\/p19-1631"},{"key":"14_CR14","unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2018)"},{"key":"14_CR15","unstructured":"Murdoch, W.J., Liu, P.J., Yu, B.: Beyond word importance: contextual decomposition to extract interactions from LSTMs. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April\u20133 May 2018, Conference Track Proceedings. OpenReview.net (2018). https:\/\/openreview.net\/forum?id=rkRwGg-0Z"},{"key":"14_CR16","unstructured":"Rieger, L., Singh, C., Murdoch, W., Yu, B.: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge. In: International Conference on Machine Learning, pp. 8116\u20138126. PMLR (2020)"},{"key":"14_CR17","doi-asserted-by":"publisher","unstructured":"Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: training differentiable models by constraining their explanations. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19\u201325 August 2017, pp. 2662\u20132670. ijcai.org (2017). https:\/\/doi.org\/10.24963\/ijcai.2017\/371","DOI":"10.24963\/ijcai.2017\/371"},{"issue":"8","key":"14_CR18","doi-asserted-by":"publisher","first-page":"476","DOI":"10.1038\/s42256-020-0212-3","volume":"2","author":"P Schramowski","year":"2020","unstructured":"Schramowski, P., et al.: Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nat. Mach. Intell. 2(8), 476\u2013486 (2020)","journal-title":"Nat. Mach. Intell."},{"key":"14_CR19","doi-asserted-by":"crossref","unstructured":"Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618\u2013626 (2017)","DOI":"10.1109\/ICCV.2017.74"},{"key":"14_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1007\/978-3-319-16808-1_12","volume-title":"Computer Vision \u2013 ACCV 2014","author":"M Simon","year":"2015","unstructured":"Simon, M., Rodner, E., Denzler, J.: Part detector discovery in deep convolutional neural networks. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 162\u2013177. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-16808-1_12"},{"key":"14_CR21","unstructured":"Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6\u201311 August 2017. Proceedings of Machine Learning Research, vol. 70, pp. 3319\u20133328. PMLR (2017). http:\/\/proceedings.mlr.press\/v70\/sundararajan17a.html"},{"key":"14_CR22","unstructured":"Szegedy, C., et al.: Intriguing properties of neural networks. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14\u201316 April 2014, Conference Track Proceedings (2014). http:\/\/arxiv.org\/abs\/1312.6199"},{"key":"14_CR23","unstructured":"Zhang, T., Zhu, Z.: Interpreting adversarially trained convolutional neural networks. In: International Conference on Machine Learning, pp. 7502\u20137511. PMLR (2019)"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-44192-9_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,21]],"date-time":"2023-09-21T06:05:03Z","timestamp":1695276303000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-44192-9_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031441912","9783031441929"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-44192-9_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"22 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Heraklion","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"947","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"426","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"type of other papers accepted : 9 Abstract","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}