{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T21:41:50Z","timestamp":1743025310329,"version":"3.40.3"},"publisher-location":"Cham","reference-count":17,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439988"},{"type":"electronic","value":"9783031439995"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43999-5_46","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:08:57Z","timestamp":1696115337000},"page":"481-490","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Noise2Aliasing: Unsupervised Deep Learning for\u00a0View Aliasing and\u00a0Noise Reduction in\u00a04DCBCT"],"prefix":"10.1007","author":[{"given":"Samuele","family":"Papa","sequence":"first","affiliation":[]},{"given":"Efstratios","family":"Gavves","sequence":"additional","affiliation":[]},{"given":"Jan-Jakob","family":"Sonke","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"issue":"8","key":"46_CR1","doi-asserted-by":"publisher","first-page":"938","DOI":"10.1200\/JCO.2006.09.9515","volume":"25","author":"LA Dawson","year":"2007","unstructured":"Dawson, L.A., Jaffray, D.A.: Advances in image-guided radiation therapy. J. Clin. Oncol. 25(8), 938\u2013946 (2007)","journal-title":"J. Clin. Oncol."},{"issue":"6","key":"46_CR2","doi-asserted-by":"publisher","first-page":"612","DOI":"10.1364\/JOSAA.1.000612","volume":"1","author":"LA Feldkamp","year":"1984","unstructured":"Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. Josa a 1(6), 612\u2013619 (1984)","journal-title":"Josa a"},{"key":"46_CR3","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-84858-7","volume-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"T Hastie","year":"2009","unstructured":"Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, New York (2009)"},{"key":"46_CR4","doi-asserted-by":"publisher","first-page":"1320","DOI":"10.1109\/TCI.2020.3019647","volume":"6","author":"AA Hendriksen","year":"2020","unstructured":"Hendriksen, A.A., Pelt, D.M., Batenburg, K.J.: Noise2Inverse: self-supervised deep convolutional denoising for tomography. IEEE Trans. Comput. Imaging 6, 1320\u20131335 (2020). https:\/\/doi.org\/10.1109\/TCI.2020.3019647","journal-title":"IEEE Trans. Comput. Imaging"},{"key":"46_CR5","unstructured":"Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: Proceedings of the 35th International Conference on Machine Learning, pp. 2965\u20132974. PMLR, July 2018"},{"issue":"11","key":"46_CR6","doi-asserted-by":"publisher","first-page":"5619","DOI":"10.1002\/mp.14441","volume":"47","author":"F Madesta","year":"2020","unstructured":"Madesta, F., Sentker, T., Gauer, T., Werner, R.: Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction. Med. Phys. 47(11), 5619\u20135631 (2020). https:\/\/doi.org\/10.1002\/mp.14441","journal-title":"Med. Phys."},{"issue":"18","key":"46_CR7","doi-asserted-by":"publisher","first-page":"6856","DOI":"10.1088\/0031-9155\/61\/18\/6856","volume":"61","author":"C Mory","year":"2016","unstructured":"Mory, C., Janssens, G., Rit, S.: Motion-aware temporal regularization for improved 4d cone-beam computed tomography. Phys. Med. Biol. 61(18), 6856 (2016)","journal-title":"Phys. Med. Biol."},{"issue":"2","key":"46_CR8","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1073\/pnas.1715832114","volume":"115","author":"DM Pelt","year":"2018","unstructured":"Pelt, D.M., Sethian, J.A.: A mixed-scale dense convolutional neural network for image analysis. Proc. Natl. Acad. Sci. 115(2), 254\u2013259 (2018)","journal-title":"Proc. Natl. Acad. Sci."},{"key":"46_CR9","doi-asserted-by":"crossref","unstructured":"Quinto, E.T.: An introduction to x-ray tomography and radon transforms. In: Proceedings of Symposia in Applied Mathematics, vol. 63, p. 1 (2006)","DOI":"10.1090\/psapm\/063\/2208234"},{"issue":"7Part1","key":"46_CR10","doi-asserted-by":"publisher","first-page":"3110","DOI":"10.1118\/1.2940725","volume":"35","author":"L Ren","year":"2008","unstructured":"Ren, L., et al.: A novel digital tomosynthesis (DTS) reconstruction method using a deformation field map. Med. Phys. 35(7Part1), 3110\u20133115 (2008)","journal-title":"Med. Phys."},{"issue":"10","key":"46_CR11","doi-asserted-by":"publisher","first-page":"4471","DOI":"10.1002\/mp.13133","volume":"45","author":"MJ Riblett","year":"2018","unstructured":"Riblett, M.J., Christensen, G.E., Weiss, E., Hugo, G.D.: Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using GroupWise deformable registration. Med. Phys. 45(10), 4471\u20134482 (2018)","journal-title":"Med. Phys."},{"key":"46_CR12","doi-asserted-by":"crossref","unstructured":"Rit, S., van Herk, M., Zijp, L., Sonke, J.J.: Quantification of the variability of diaphragm motion and implications for treatment margin construction. Int. J. Radiat. Oncol. * Biol.* Phys. 82(3), e399\u2013e407 (2012)","DOI":"10.1016\/j.ijrobp.2011.06.1986"},{"key":"46_CR13","doi-asserted-by":"publisher","DOI":"10.1088\/1742-6596\/489\/1\/012079","volume":"489","author":"S Rit","year":"2014","unstructured":"Rit, S., Oliva, M.V., Brousmiche, S., Labarbe, R., Sarrut, D., Sharp, G.C.: The reconstruction toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the insight toolkit (ITK). J. Phys. Conf. Ser. 489, 012079 (2014)","journal-title":"J. Phys. Conf. Ser."},{"issue":"6Part1","key":"46_CR14","doi-asserted-by":"publisher","first-page":"2283","DOI":"10.1118\/1.3115691","volume":"36","author":"S Rit","year":"2009","unstructured":"Rit, S., Wolthaus, J.W., van Herk, M., Sonke, J.J.: On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion. Med. Phys. 36(6Part1), 2283\u20132296 (2009)","journal-title":"Med. Phys."},{"issue":"9","key":"46_CR15","doi-asserted-by":"publisher","first-page":"3799","DOI":"10.1002\/mp.13687","volume":"46","author":"CC Shieh","year":"2019","unstructured":"Shieh, C.C., et al.: Spare: sparse-view reconstruction challenge for 4d cone-beam CT from a 1-min scan. Med. Phys. 46(9), 3799\u20133811 (2019)","journal-title":"Med. Phys."},{"issue":"4","key":"46_CR16","doi-asserted-by":"publisher","first-page":"1176","DOI":"10.1118\/1.1869074","volume":"32","author":"JJ Sonke","year":"2005","unstructured":"Sonke, J.J., Zijp, L., Remeijer, P., van Herk, M.: Respiratory correlated cone beam CT: respiratory correlated cone beam CT. Med. Phys. 32(4), 1176\u20131186 (2005). https:\/\/doi.org\/10.1118\/1.1869074","journal-title":"Med. Phys."},{"issue":"4","key":"46_CR17","doi-asserted-by":"publisher","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43999-5_46","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,11]],"date-time":"2024-03-11T14:47:32Z","timestamp":1710168452000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43999-5_46"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439988","9783031439995"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43999-5_46","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}