{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T21:55:14Z","timestamp":1743026114146,"version":"3.40.3"},"publisher-location":"Cham","reference-count":15,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439926"},{"type":"electronic","value":"9783031439933"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43993-3_58","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:07:48Z","timestamp":1696115268000},"page":"603-612","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Unsupervised Learning for\u00a0Feature Extraction and\u00a0Temporal Alignment of\u00a03D+t Point Clouds of\u00a0Zebrafish Embryos"],"prefix":"10.1007","author":[{"given":"Zhu","family":"Chen","sequence":"first","affiliation":[]},{"given":"Ina","family":"Laube","sequence":"additional","affiliation":[]},{"given":"Johannes","family":"Stegmaier","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"key":"58_CR1","doi-asserted-by":"crossref","unstructured":"Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 206\u2013215 (2018)","DOI":"10.1109\/CVPR.2018.00029"},{"key":"58_CR2","doi-asserted-by":"crossref","unstructured":"Traub, M., Stegmaier, J.: Towards automatic embryo staging in 3D+t microscopy images using convolutional neural networks and PointNets. In: Simulation and Synthesis in Medical Imaging, pp. 153\u2013163 (2020)","DOI":"10.1007\/978-3-030-59520-3_16"},{"key":"58_CR3","doi-asserted-by":"crossref","unstructured":"Teame, T., et al.: The use of zebrafish (Danio rerio) as biomedical models. Anim. Front. 9(3), 68\u201377 (2019)","DOI":"10.1093\/af\/vfz020"},{"issue":"1","key":"58_CR4","doi-asserted-by":"publisher","first-page":"8601","DOI":"10.1038\/srep08601","volume":"5","author":"AY Kobitski","year":"2015","unstructured":"Kobitski, A.Y., et al.: An ensemble-averaged, cell density-based digital model of zebrafish embryo development derived from light-sheet microscopy data with single-cell resolution. Sci. Rep. 5(1), 8601 (2015)","journal-title":"Sci. Rep."},{"key":"58_CR5","doi-asserted-by":"crossref","unstructured":"Guignard, L., Godin, C., Fiuza, U.M., Hufnagel, L., Lemaire, P., Malandain, G.: Spatio-temporal registration of embryo images. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 778\u2013781 (2014)","DOI":"10.1109\/ISBI.2014.6867986"},{"issue":"6","key":"58_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pcbi.1003670","volume":"10","author":"C Castro-Gonz\u00e1lez","year":"2014","unstructured":"Castro-Gonz\u00e1lez, C., et al.: A digital framework to build, visualize and analyze a gene expression atlas with cellular resolution in zebrafish early embryogenesis. PLoS Comput. Biol. 10(6), 1\u201313 (2014)","journal-title":"PLoS Comput. Biol."},{"issue":"11","key":"58_CR7","first-page":"2579","volume":"9","author":"L Van der Maaten","year":"2008","unstructured":"Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579\u20132605 (2008)","journal-title":"J. Mach. Learn. Res."},{"key":"58_CR8","unstructured":"Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652\u2013660 (2017)"},{"key":"58_CR9","doi-asserted-by":"crossref","unstructured":"Ahrens, J., Geveci, B., Law, C.C.: ParaView: An End-User Tool for Large-Data Visualization. In: The Visualization Handbook (2005)","DOI":"10.1016\/B978-012387582-2\/50038-1"},{"key":"58_CR10","unstructured":"Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds (2019)"},{"key":"58_CR11","doi-asserted-by":"crossref","unstructured":"Chaton, T., Chaulet, N., Horache, S., Landrieu, L.: Torch-Points3D: a modular multi-task framework for reproducible deep learning on 3D point clouds. In: 2020 International Conference on 3D Vision (3DV), pp. 1\u201310 (2020)","DOI":"10.1109\/3DV50981.2020.00029"},{"issue":"4","key":"58_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pcbi.1006128","volume":"14","author":"B Schott","year":"2018","unstructured":"Schott, B.: EmbryoMiner: a new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos. PLoS Comput. Biol. 14(4), 1\u201318 (2018)","journal-title":"PLoS Comput. Biol."},{"key":"58_CR13","doi-asserted-by":"crossref","unstructured":"Michelin, G., et al.: Spatio-temporal registration of 3D microscopy image sequences of arabidopsis floral meristems. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1127\u20131130 (2016)","DOI":"10.1109\/ISBI.2016.7493464"},{"key":"58_CR14","doi-asserted-by":"crossref","unstructured":"Michelin, G., Guignard, L., Fiuza, U.M., Lemaire, P., Godine, C., Malandain, G.: Cell pairings for ascidian embryo registration. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 298\u2013301 (2015)","DOI":"10.1109\/ISBI.2015.7163872"},{"key":"58_CR15","doi-asserted-by":"crossref","unstructured":"McDole, K., et al.: In Toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175(3), 859\u2013876 (2018)","DOI":"10.1016\/j.cell.2018.09.031"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43993-3_58","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,2]],"date-time":"2024-04-02T16:12:34Z","timestamp":1712074354000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43993-3_58"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439926","9783031439933"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43993-3_58","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}