{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,16]],"date-time":"2025-04-16T22:27:44Z","timestamp":1744842464484,"version":"3.40.3"},"publisher-location":"Cham","reference-count":30,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439926"},{"type":"electronic","value":"9783031439933"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43993-3_2","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:08:57Z","timestamp":1696115337000},"page":"14-24","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":30,"title":["Generating Realistic Brain MRIs via\u00a0a\u00a0Conditional Diffusion Probabilistic Model"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-2892-5764","authenticated-orcid":false,"given":"Wei","family":"Peng","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0579-7763","authenticated-orcid":false,"given":"Ehsan","family":"Adeli","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9726-6400","authenticated-orcid":false,"given":"Tomas","family":"Bosschieter","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7476-1046","authenticated-orcid":false,"given":"Sang Hyun","family":"Park","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6368-0889","authenticated-orcid":false,"given":"Qingyu","family":"Zhao","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5416-5159","authenticated-orcid":false,"given":"Kilian M.","family":"Pohl","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"key":"2_CR1","doi-asserted-by":"crossref","unstructured":"Bermudez, C., Plassard, A.J., Davis, L.T., Newton, A.T., Resnick, S.M., Landman, B.A.: Learning implicit brain MRI manifolds with deep learning. In: Medical Imaging 2018: Image Processing, vol. 10574, pp. 408\u2013414. SPIE (2018)","DOI":"10.1117\/12.2293515"},{"issue":"10","key":"2_CR2","doi-asserted-by":"publisher","first-page":"2375","DOI":"10.1109\/TMI.2019.2901750","volume":"38","author":"SU Dar","year":"2019","unstructured":"Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., \u00c7ukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375\u20132388 (2019)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"2_CR3","unstructured":"Dorjsembe, Z., Odonchimed, S., Xiao, F.: Three-dimensional medical image synthesis with denoising diffusion probabilistic models. In: Medical Imaging with Deep Learning (2022). https:\/\/openreview.net\/forum?id=Oz7lKWVh45H"},{"key":"2_CR4","doi-asserted-by":"crossref","unstructured":"Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139\u2013144 (2020)","DOI":"10.1145\/3422622"},{"issue":"1","key":"2_CR5","first-page":"723","volume":"13","author":"A Gretton","year":"2012","unstructured":"Gretton, A., Borgwardt, K.M., Rasch, M.J., Sch\u00f6lkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723\u2013773 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"2_CR6","unstructured":"Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: NIPS, vol. 30, pp. 5769\u20135779 (2017)"},{"key":"2_CR7","doi-asserted-by":"crossref","unstructured":"Han, C., et al.: GAN-based synthetic brain MR image generation. In: IEEE International Symposium on Biomedical Imaging, pp. 734\u2013738 (2018)","DOI":"10.1109\/ISBI.2018.8363678"},{"key":"2_CR8","unstructured":"Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840\u20136851 (2020)"},{"key":"2_CR9","doi-asserted-by":"publisher","unstructured":"Jung, E., Luna, M., Park, S.H.: Conditional GAN with an attention-based generator and a 3D discriminator for 3D medical image generation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 318\u2013328. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87231-1_31","DOI":"10.1007\/978-3-030-87231-1_31"},{"key":"2_CR10","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2022.109061","volume":"133","author":"E Jung","year":"2023","unstructured":"Jung, E., Luna, M., Park, S.H.: Conditional GAN with 3D discriminator for MRI generation of Alzheimer\u2019s disease progression. Pattern Recogn. 133, 109061 (2023)","journal-title":"Pattern Recogn."},{"key":"2_CR11","doi-asserted-by":"crossref","unstructured":"Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401\u20134410 (2019)","DOI":"10.1109\/CVPR.2019.00453"},{"key":"2_CR12","doi-asserted-by":"publisher","unstructured":"Kwon, G., Han, C., Kim, D.: Generation of 3D brain MRI using auto-encoding generative adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 118\u2013126. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32248-9_14","DOI":"10.1007\/978-3-030-32248-9_14"},{"key":"2_CR13","unstructured":"La Barbera, G., et al.: Anatomically constrained CT image translation for heterogeneous blood vessel segmentation. In: British Machine Vision Virtual Conference, p. 776 (2022)"},{"key":"2_CR14","unstructured":"Larsen, A.B.L., S\u00f8nderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Machine Learning, pp. 1558\u20131566. Proceedings of Machine Learning Research (2016)"},{"key":"2_CR15","unstructured":"Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)"},{"key":"2_CR16","doi-asserted-by":"publisher","unstructured":"Ouyang, J., Adeli, E., Pohl, K.M., Zhao, Q., Zaharchuk, G.: Representation disentanglement for multi-modal brain MRI Analysis. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 321\u2013333. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-78191-0_25","DOI":"10.1007\/978-3-030-78191-0_25"},{"key":"2_CR17","unstructured":"Pawlowski, N., Coelho de Castro, D., Glocker, B.: Deep structural causal models for tractable counterfactual inference. Adv. Neural Inf. Process. Syst. 33, 857\u2013869 (2020)"},{"key":"2_CR18","doi-asserted-by":"crossref","unstructured":"Pinaya, W.H., et al.: Brain imaging generation with latent diffusion models. In: Deep Generative Models: DGM4MICCAI 2022, pp. 117\u2013126 (2022)","DOI":"10.1007\/978-3-031-18576-2_12"},{"key":"2_CR19","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 9351, pp. 234\u2013241 (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"2_CR20","doi-asserted-by":"publisher","unstructured":"Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 2, pp. 464\u2013468. Association for Computational Linguistics, New Orleans (2018). https:\/\/doi.org\/10.18653\/v1\/N18-2074, https:\/\/aclanthology.org\/N18-2074","DOI":"10.18653\/v1\/N18-2074"},{"key":"2_CR21","doi-asserted-by":"crossref","unstructured":"Shin, H.C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: International Workshop on Simulation and Synthesis in Medical Imaging, vol. 11037 (2018)","DOI":"10.1007\/978-3-030-00536-8_1"},{"key":"2_CR22","unstructured":"Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256\u20132265. PMLR (2015)"},{"issue":"8","key":"2_CR23","doi-asserted-by":"publisher","first-page":"3966","DOI":"10.1109\/JBHI.2022.3172976","volume":"26","author":"L Sun","year":"2022","unstructured":"Sun, L., Chen, J., Xu, Y., Gong, M., Yu, K., Batmanghelich, K.: Hierarchical amortized GAN for 3D high resolution medical image synthesis. IEEE J. Biomed. Health Inf. 26(8), 3966\u20133975 (2022)","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"2_CR24","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"2_CR25","doi-asserted-by":"crossref","unstructured":"Wolleb, J., Bieder, F., Sandk\u00fchler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 13438, pp. 35\u201345 (2022)","DOI":"10.1007\/978-3-031-16452-1_4"},{"key":"2_CR26","unstructured":"Xing, S., Sinha, H., Hwang, S.J.: Cycle consistent embedding of 3D brains with auto-encoding generative adversarial networks. In: Medical Imaging with Deep Learning (2021)"},{"key":"2_CR27","doi-asserted-by":"crossref","unstructured":"Yu, B., Zhou, L., Wang, L., Fripp, J., Bourgeat, P.: 3D cGAN based cross-modality MR image synthesis for brain tumor segmentation. In: IEEE 15th International Symposium on Biomedical Imaging, pp. 626\u2013630 (2018)","DOI":"10.1109\/ISBI.2018.8363653"},{"key":"2_CR28","doi-asserted-by":"crossref","unstructured":"Zhang, J., et al.: Multi-label, multi-domain learning identifies compounding effects of HIV and cognitive impairment. Med. Image Anal. 75, 102246 (2022)","DOI":"10.1016\/j.media.2021.102246"},{"key":"2_CR29","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2021.102051","volume":"71","author":"Q Zhao","year":"2021","unstructured":"Zhao, Q., Liu, Z., Adeli, E., Pohl, K.M.: Longitudinal self-supervised learning. Med. Image Anal. 71, 102051 (2021)","journal-title":"Med. Image Anal."},{"key":"2_CR30","unstructured":"Zheng, S., Charoenphakdee, N.: Diffusion models for missing value imputation in tabular data. In: NeurIPS Table Representation Learning (TRL) Workshop (2022)"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43993-3_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,2]],"date-time":"2024-04-02T16:09:07Z","timestamp":1712074147000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43993-3_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439926","9783031439933"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43993-3_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}