{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:16:39Z","timestamp":1728177399297},"publisher-location":"Cham","reference-count":26,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439896"},{"type":"electronic","value":"9783031439902"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43990-2_63","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:07:48Z","timestamp":1696115268000},"page":"671-681","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Lesion-Aware Contrastive Learning for\u00a0Diabetic Retinopathy Diagnosis"],"prefix":"10.1007","author":[{"given":"Shuai","family":"Cheng","sequence":"first","affiliation":[]},{"given":"Qingshan","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Osmar R.","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"key":"63_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101724","volume":"64","author":"MS Ayhan","year":"2020","unstructured":"Ayhan, M.S., K\u00fchlewein, L., Aliyeva, G., Inhoffen, W., Ziemssen, F., Berens, P.: Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection. Med. Image Anal. 64, 101724 (2020)","journal-title":"Med. Image Anal."},{"key":"63_CR2","unstructured":"Cai, T.T., Frankle, J., Schwab, D.J., Morcos, A.S.: Are all negatives created equal in contrastive instance discrimination? arXiv preprint arXiv:2010.06682 (2020)"},{"key":"63_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2022.105341","volume":"144","author":"P Cao","year":"2022","unstructured":"Cao, P., Hou, Q., Song, R., Wang, H., Zaiane, O.: Collaborative learning of weakly-supervised domain adaptation for diabetic retinopathy grading on retinal images. Comput. Biol. Med. 144, 105341 (2022)","journal-title":"Comput. Biol. Med."},{"key":"63_CR4","unstructured":"Emma Dugas, Jared, J.W.C.: Diabetic retinopathy detection (2015). https:\/\/kaggle.com\/competitions\/diabetic-retinopathy-detection"},{"key":"63_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1007\/978-3-030-32239-7_6","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"H Fu","year":"2019","unstructured":"Fu, H., et al.: Evaluation of retinal image quality assessment networks in different color-spaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 48\u201356. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32239-7_6"},{"key":"63_CR6","doi-asserted-by":"crossref","unstructured":"He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729\u20139738 (2020)","DOI":"10.1109\/CVPR42600.2020.00975"},{"key":"63_CR7","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"issue":"7","key":"63_CR8","first-page":"38","volume":"14","author":"G Hinton","year":"2015","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Comput. Sci. 14(7), 38\u201339 (2015)","journal-title":"Comput. Sci."},{"key":"63_CR9","doi-asserted-by":"publisher","unstructured":"Hou, Q., Cao, P., Jia, L., Chen, L., Yang, J., Zaiane, O.R.: Image quality assessment guided collaborative learning of image enhancement and classification for diabetic retinopathy grading. IEEE J. Biomed. Health Inform. 1\u201312 (2022). https:\/\/doi.org\/10.1109\/JBHI.2022.3231276","DOI":"10.1109\/JBHI.2022.3231276"},{"key":"63_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1007\/978-3-030-87196-3_11","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"Y Huang","year":"2021","unstructured":"Huang, Y., Lin, L., Cheng, P., Lyu, J., Tang, X.: Lesion-based contrastive learning for diabetic retinopathy grading from fundus images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 113\u2013123. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87196-3_11"},{"issue":"12","key":"63_CR11","doi-asserted-by":"publisher","first-page":"4023","DOI":"10.1109\/TMI.2020.3008871","volume":"39","author":"X Li","year":"2020","unstructured":"Li, X., Jia, M., Islam, M.T., Yu, L., Xing, L.: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans. Med. Imaging 39(12), 4023\u20134033 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"63_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1007\/978-3-030-00934-2_9","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"Z Lin","year":"2018","unstructured":"Lin, Z., et al.: A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 74\u201382. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00934-2_9"},{"issue":"6","key":"63_CR13","doi-asserted-by":"publisher","first-page":"e271","DOI":"10.1016\/S2589-7500(19)30123-2","volume":"1","author":"X Liu","year":"2019","unstructured":"Liu, X., et al.: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit. Health 1(6), e271\u2013e297 (2019)","journal-title":"Lancet Digit. Health"},{"key":"63_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.diabres.2021.109118","volume":"183","author":"K Ogurtsova","year":"2022","unstructured":"Ogurtsova, K., et al.: IDF diabetes atlas: global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 183, 109118 (2022)","journal-title":"Diabetes Res. Clin. Pract."},{"issue":"3","key":"63_CR15","doi-asserted-by":"publisher","first-page":"25","DOI":"10.3390\/data3030025","volume":"3","author":"P Porwal","year":"2018","unstructured":"Porwal, P., Pachade, S., Kamble, R., Kokare, M., Meriaudeau, F.: Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3), 25 (2018)","journal-title":"Data"},{"key":"63_CR16","unstructured":"Robinson, J., Chuang, C.Y., Sra, S., Jegelka, S.: Contrastive learning with hard negative samples. In: International Conference on Learning Representations (ICLR) (2021)"},{"issue":"3","key":"63_CR17","doi-asserted-by":"publisher","first-page":"996","DOI":"10.1109\/TMI.2020.3043495","volume":"40","author":"Z Shen","year":"2020","unstructured":"Shen, Z., Fu, H., Shen, J., Shao, L.: Modeling and enhancing low-quality retinal fundus images. IEEE Trans. Med. Imaging 40(3), 996\u20131006 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"63_CR18","first-page":"6827","volume":"33","author":"Y Tian","year":"2020","unstructured":"Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? Adv. Neural. Inf. Process. Syst. 33, 6827\u20136839 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"63_CR19","doi-asserted-by":"crossref","unstructured":"Wang, X., Xu, M., Zhang, J., Jiang, L., Li, L.: Deep multi-task learning for diabetic retinopathy grading in fundus images. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2826\u20132834 (2021)","DOI":"10.1609\/aaai.v35i4.16388"},{"key":"63_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1007\/978-3-319-66179-7_31","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2017","author":"Z Wang","year":"2017","unstructured":"Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-Net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267\u2013275. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66179-7_31"},{"key":"63_CR21","doi-asserted-by":"publisher","unstructured":"Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 588\u2013604. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58545-7_34","DOI":"10.1007\/978-3-030-58545-7_34"},{"key":"63_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1007\/978-3-030-87237-3_5","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"S Yu","year":"2021","unstructured":"Yu, S., et al.: MIL-VT: multiple instance learning enhanced vision transformer for fundus image classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 45\u201354. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87237-3_5"},{"key":"63_CR23","doi-asserted-by":"crossref","unstructured":"Zeng, X., Chen, H., Luo, Y., Ye, W.: Automated detection of diabetic retinopathy using a binocular Siamese-like convolutional network. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1\u20135. IEEE (2019)","DOI":"10.1109\/ISCAS.2019.8702328"},{"key":"63_CR24","doi-asserted-by":"crossref","unstructured":"Zhou, K., et al.: Multi-cell multi-task convolutional neural networks for diabetic retinopathy grading. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2724\u20132727. IEEE (2018)","DOI":"10.1109\/EMBC.2018.8512828"},{"issue":"3","key":"63_CR25","doi-asserted-by":"publisher","first-page":"818","DOI":"10.1109\/TMI.2020.3037771","volume":"40","author":"Y Zhou","year":"2020","unstructured":"Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818\u2013828 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"63_CR26","doi-asserted-by":"crossref","unstructured":"Zolfaghari, M., Zhu, Y., Gehler, P., Brox, T.: CrossCLR: cross-modal contrastive learning for multi-modal video representations. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1450\u20131459 (2021)","DOI":"10.1109\/ICCV48922.2021.00148"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43990-2_63","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,11]],"date-time":"2024-03-11T15:43:28Z","timestamp":1710171808000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43990-2_63"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439896","9783031439902"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43990-2_63","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}