{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:16:15Z","timestamp":1728177375938},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439063"},{"type":"electronic","value":"9783031439070"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43907-0_30","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:08:57Z","timestamp":1696115337000},"page":"310-319","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Modeling Alzheimers\u2019 Disease Progression from\u00a0Multi-task and\u00a0Self-supervised Learning Perspective with\u00a0Brain Networks"],"prefix":"10.1007","author":[{"given":"Wei","family":"Liang","sequence":"first","affiliation":[]},{"given":"Kai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Pengfei","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Osmar R.","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"key":"30_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"717","DOI":"10.1007\/978-3-031-16437-8_69","volume-title":"Medical Image Computing and Computer Assisted Intervention-MICCAI 2022","author":"AI Aviles-Rivero","year":"2022","unstructured":"Aviles-Rivero, A.I., Runkel, C., Papadakis, N., Kourtzi, Z., Sch\u00f6nlieb, C.B.: Multi-modal hypergraph diffusion network with dual prior for Alzheimer classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part III. LNCS, vol. 13433, pp. 717\u2013727. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16437-8_69"},{"key":"30_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1007\/978-3-030-00928-1_63","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"L Brand","year":"2018","unstructured":"Brand, L., Wang, H., Huang, H., Risacher, S., Saykin, A., Shen, L.: Joint high-order multi-task feature learning to predict the progression of Alzheimer\u2019s disease. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 555\u2013562. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00928-1_63"},{"key":"30_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102698","volume":"84","author":"Z Chen","year":"2023","unstructured":"Chen, Z., Liu, Y., Zhang, Y., Li, Q., Initiative, A.D.N., et al.: Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer\u2019s disease diagnosis. Med. Image Anal. 84, 102698 (2023)","journal-title":"Med. Image Anal."},{"key":"30_CR4","series-title":"Studies in Computational Intelligence","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1007\/978-3-642-24797-2_4","volume-title":"Supervised Sequence Labelling with Recurrent Neural Networks","author":"A Graves","year":"2012","unstructured":"Graves, A.: Long short-term memory. In: Graves, A. (ed.) Supervised Sequence Labelling with Recurrent Neural Networks. SCI, vol. 385, pp. 37\u201345. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-24797-2_4"},{"key":"30_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102375","volume":"77","author":"Y Huang","year":"2022","unstructured":"Huang, Y., Chung, A.C.: Disease prediction with edge-variational graph convolutional networks. Med. Image Anal. 77, 102375 (2022)","journal-title":"Med. Image Anal."},{"key":"30_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2021.118143","volume":"237","author":"W Jung","year":"2021","unstructured":"Jung, W., Jun, E., Suk, H.I., Initiative, A.D.N., et al.: Deep recurrent model for individualized prediction of Alzheimer\u2019s disease progression. Neuroimage 237, 118143 (2021)","journal-title":"Neuroimage"},{"key":"30_CR7","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)"},{"key":"30_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2021.104935","volume":"138","author":"W Liang","year":"2021","unstructured":"Liang, W., Zhang, K., Cao, P., Liu, X., Yang, J., Zaiane, O.: Rethinking modeling Alzheimer\u2019s disease progression from a multi-task learning perspective with deep recurrent neural network. Comput. Biol. Med. 138, 104935 (2021)","journal-title":"Comput. Biol. Med."},{"key":"30_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1007\/978-3-031-16452-1_15","volume-title":"Medical Image Computing and Computer Assisted Intervention-MICCAI 2022","author":"W Liao","year":"2022","unstructured":"Liao, W., et al.: MUSCLE: multi-task self-supervised continual learning to pre-train deep models for X-ray images of multiple body parts. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 151\u2013161. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16452-1_15"},{"issue":"7197","key":"30_CR10","doi-asserted-by":"publisher","first-page":"869","DOI":"10.1038\/nature06976","volume":"453","author":"NK Logothetis","year":"2008","unstructured":"Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869\u2013878 (2008)","journal-title":"Nature"},{"key":"30_CR11","unstructured":"Marinescu, R.V., et al.: Tadpole challenge: prediction of longitudinal evolution in Alzheimer\u2019s disease. arXiv preprint arXiv:1805.03909 (2018)"},{"key":"30_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1007\/978-3-031-16431-6_6","volume-title":"Medical Image Computing and Computer Assisted Intervention-MICCAI 2022","author":"HD Nguyen","year":"2022","unstructured":"Nguyen, H.D., Cl\u00e9ment, M., Mansencal, B., Coup\u00e9, P.: Interpretable differential diagnosis for Alzheimer\u2019s disease and frontotemporal dementia. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 55\u201365. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16431-6_6"},{"key":"30_CR13","doi-asserted-by":"crossref","unstructured":"Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363\u20135370 (2020)","DOI":"10.1609\/aaai.v34i04.5984"},{"key":"30_CR14","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1016\/j.media.2018.06.001","volume":"48","author":"S Parisot","year":"2018","unstructured":"Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer\u2019s disease. Med. Image Anal. 48, 117\u2013130 (2018)","journal-title":"Med. Image Anal."},{"key":"30_CR15","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1007\/978-3-031-16431-6_9","volume-title":"Medical Image Computing and Computer Assisted Intervention-MICCAI 2022","author":"E Petersen","year":"2022","unstructured":"Petersen, E., et al.: Feature robustness and sex differences in medical imaging: a case study in MRI-based Alzheimer\u2019s disease detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 88\u201398. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16431-6_9"},{"key":"30_CR16","doi-asserted-by":"crossref","unstructured":"Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: DySAT: deep neural representation learning on dynamic graphs via self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 519\u2013527 (2020)","DOI":"10.1145\/3336191.3371845"},{"key":"30_CR17","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1007\/978-3-031-16431-6_44","volume-title":"Medical Image Computing and Computer Assisted Intervention-MICCAI 2022","author":"MS Seyfio\u011flu","year":"2022","unstructured":"Seyfio\u011flu, M.S., et al.: Brain-aware replacements for supervised contrastive learning in detection of Alzheimer\u2019s disease. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 461\u2013470. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16431-6_44"},{"issue":"1","key":"30_CR18","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1006\/nimg.2001.0978","volume":"15","author":"N Tzourio-Mazoyer","year":"2002","unstructured":"Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273\u2013289 (2002)","journal-title":"Neuroimage"},{"key":"30_CR19","doi-asserted-by":"publisher","first-page":"406","DOI":"10.1007\/978-3-031-16452-1_39","volume-title":"Medical Image Computing and Computer Assisted Intervention-MICCAI 2022","author":"T Xiao","year":"2022","unstructured":"Xiao, T., Zeng, L., Shi, X., Zhu, X., Wu, G.: Dual-graph learning convolutional networks for interpretable Alzheimer\u2019s disease diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 406\u2013415. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16452-1_39"},{"key":"30_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102643","volume":"82","author":"L Xu","year":"2022","unstructured":"Xu, L., et al.: Multi-modal sequence learning for Alzheimer\u2019s disease progression prediction with incomplete variable-length longitudinal data. Med. Image Anal. 82, 102643 (2022)","journal-title":"Med. Image Anal."},{"key":"30_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"362","DOI":"10.1007\/978-3-030-87196-3_34","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"F Yang","year":"2021","unstructured":"Yang, F., Meng, R., Cho, H., Wu, G., Kim, W.H.: Disentangled sequential graph autoencoder for preclinical Alzheimer\u2019s disease characterizations from\u00a0ADNI\u00a0study. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part II. LNCS, vol. 12902, pp. 362\u2013372. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87196-3_34"},{"key":"30_CR22","doi-asserted-by":"crossref","unstructured":"Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)","DOI":"10.24963\/ijcai.2018\/505"},{"key":"30_CR23","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1007\/978-3-031-16431-6_4","volume-title":"Medical Image Computing and Computer Assisted Intervention-MICCAI 2022","author":"S Zhang","year":"2022","unstructured":"Zhang, S., et al.: 3D global Fourier network for Alzheimer\u2019s disease diagnosis using structural MRI. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 34\u201343. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16431-6_4"},{"key":"30_CR24","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/978-3-031-16452-1_6","volume-title":"Medical Image Computing and Computer Assisted Intervention-MICCAI 2022","author":"J Zhu","year":"2022","unstructured":"Zhu, J., Li, Y., Ding, L., Zhou, S.K.: Aggregative self-supervised feature learning from limited medical images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part VIII. LNCS, vol. 13438, pp. 57\u201366. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16452-1_6"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43907-0_30","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T18:25:15Z","timestamp":1709835915000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43907-0_30"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439063","9783031439070"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43907-0_30","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}