{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:03:55Z","timestamp":1732043035242,"version":"3.28.0"},"publisher-location":"Cham","reference-count":34,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439032"},{"type":"electronic","value":"9783031439049"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43904-9_16","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:08:57Z","timestamp":1696115337000},"page":"157-167","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Detecting Domain Shift in\u00a0Multiple Instance Learning for\u00a0Digital Pathology Using Fr\u00e9chet Domain Distance"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8734-6500","authenticated-orcid":false,"given":"Milda","family":"Pocevi\u010di\u016bt\u0117","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9217-9997","authenticated-orcid":false,"given":"Gabriel","family":"Eilertsen","sequence":"additional","affiliation":[]},{"given":"Stina","family":"Garvin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9368-0177","authenticated-orcid":false,"given":"Claes","family":"Lundstr\u00f6m","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"issue":"8","key":"16_CR1","doi-asserted-by":"publisher","first-page":"1301","DOI":"10.1038\/s41591-019-0508-1","volume":"25","author":"G Campanella","year":"2019","unstructured":"Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301\u20131309 (2019)","journal-title":"Nat. Med."},{"issue":"1","key":"16_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12864-019-6413-7","volume":"21","author":"D Chicco","year":"2020","unstructured":"Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation. BMC Genom. 21(1), 1\u201313 (2020)","journal-title":"BMC Genom."},{"key":"16_CR3","doi-asserted-by":"crossref","unstructured":"Dowson, D., Landau, B.: The fr\u00e9chet distance between multivariate normal distributions. J. Multivar. Anal. 12(3), 450\u2013455 (1982)","DOI":"10.1016\/0047-259X(82)90077-X"},{"key":"16_CR4","doi-asserted-by":"crossref","unstructured":"Elder, B., Arnold, M., Murthi, A., Navratil, J.: Learning prediction intervals for model performance. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)","DOI":"10.1609\/aaai.v35i8.16897"},{"key":"16_CR5","doi-asserted-by":"crossref","unstructured":"Elsahar, H., Gall\u00e9, M.: To annotate or not? Predicting performance drop under domain shift. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2163\u20132173 (2019)","DOI":"10.18653\/v1\/D19-1222"},{"issue":"1","key":"16_CR6","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1186\/1746-1596-9-121","volume":"9","author":"DS Gomes","year":"2014","unstructured":"Gomes, D.S., Porto, S.S., Balabram, D., Gobbi, H.: Inter-observer variability between general pathologists and a specialist in breast pathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of the breast. Diagn. Pathol. 9(1), 121 (2014)","journal-title":"Diagn. Pathol."},{"issue":"3","key":"16_CR7","doi-asserted-by":"publisher","first-page":"1173","DOI":"10.1109\/TBME.2021.3117407","volume":"69","author":"H Guan","year":"2021","unstructured":"Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173\u20131185 (2021)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"16_CR8","doi-asserted-by":"crossref","unstructured":"Guillory, D., Shankar, V., Ebrahimi, S., Darrell, T., Schmidt, L.: Predicting with confidence on unseen distributions. In: 2021 IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 1114\u20131124 (2021)","DOI":"10.1109\/ICCV48922.2021.00117"},{"key":"16_CR9","unstructured":"Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1321\u20131330. PMLR (2017)"},{"key":"16_CR10","unstructured":"Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium (2017)"},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"Hoebel, K., et al.: Do i know this? Segmentation uncertainty under domain shift. In: Proceedings of SPIE, the International Society for Optical Engineering, vol. 12032, pp. 1203211\u20131203216 (2022)","DOI":"10.1117\/12.2611867"},{"key":"16_CR12","unstructured":"Jarkman, S., Lindvall, M., Hedlund, J., Treanor, D., Lundstr\u00f6m, C., van der Laak, J.: Axillary lymph nodes in breast cancer cases (2019)"},{"issue":"21","key":"16_CR13","doi-asserted-by":"publisher","first-page":"5424","DOI":"10.3390\/cancers14215424","volume":"14","author":"S Jarkman","year":"2022","unstructured":"Jarkman, S., et al.: Generalization of deep learning in digital pathology: experience in breast cancer metastasis detection. Cancers 14(21), 5424 (2022)","journal-title":"Cancers"},{"key":"16_CR14","unstructured":"Javed, S.A., Juyal, D., Padigela, H., Taylor-Weiner, A., Yu, L., Prakash, A.: Additive MIL: Intrinsically interpretable multiple instance learning for pathology. In: Advances in Neural Information Processing Systems (2022)"},{"key":"16_CR15","unstructured":"Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)"},{"issue":"6","key":"16_CR16","doi-asserted-by":"publisher","first-page":"giy065","DOI":"10.1093\/gigascience\/giy065","volume":"7","author":"G Litjens","year":"2018","unstructured":"Litjens, G., et al.: 1399 H &E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience 7(6), giy065 (2018)","journal-title":"GigaScience"},{"issue":"6","key":"16_CR17","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1038\/s41551-020-00682-w","volume":"5","author":"MY Lu","year":"2021","unstructured":"Lu, M.Y., et al.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555\u2013570 (2021)","journal-title":"Nat. Biomed. Eng."},{"key":"16_CR18","doi-asserted-by":"crossref","unstructured":"Maggio, S., Bouvier, V., Dreyfus-Schmidt, L.: Performance prediction under dataset shift. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 2466\u20132474 (2022)","DOI":"10.1109\/ICPR56361.2022.9956676"},{"key":"16_CR19","doi-asserted-by":"crossref","unstructured":"Martinez, C., et al.: Segmentation certainty through uncertainty: uncertainty-refined binary volumetric segmentation under multifactor domain shift. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)","DOI":"10.1109\/CVPRW.2019.00066"},{"issue":"1","key":"16_CR20","doi-asserted-by":"publisher","first-page":"521","DOI":"10.1016\/j.patcog.2011.06.019","volume":"45","author":"JG Moreno-Torres","year":"2012","unstructured":"Moreno-Torres, J.G., et al.: A unifying view on dataset shift in classification. Pattern Recogn. 45(1), 521\u2013530 (2012)","journal-title":"Pattern Recogn."},{"issue":"1","key":"16_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-022-11826-0","volume":"12","author":"M Pocevi\u010di\u016bt\u0117","year":"2022","unstructured":"Pocevi\u010di\u016bt\u0117, M., Eilertsen, G., Jarkman, S., Lundstr\u00f6m, C.: Generalisation effects of predictive uncertainty estimation in deep learning for digital pathology. Sci. Rep. 12(1), 1\u201315 (2022)","journal-title":"Sci. Rep."},{"key":"16_CR22","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/j.future.2022.03.006","volume":"133","author":"AG Prabono","year":"2022","unstructured":"Prabono, A.G., Yahya, B.N., Lee, S.L.: Multiple-instance domain adaptation for cost-effective sensor-based human activity recognition. Futur. Gener. Comput. Syst. 133, 114\u2013123 (2022)","journal-title":"Futur. Gener. Comput. Syst."},{"key":"16_CR23","doi-asserted-by":"crossref","unstructured":"Praveen, R.G., Granger, E., Cardinal, P.: Deep weakly supervised domain adaptation for pain localization in videos. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 473\u2013480. IEEE (2020)","DOI":"10.1109\/FG47880.2020.00139"},{"key":"16_CR24","unstructured":"Rabanser, S., G\u00fcnnemann, S., Lipton, Z.: Failing loudly: an empirical study of methods for detecting dataset shift. In: NeurIPS 2019 (2019)"},{"key":"16_CR25","doi-asserted-by":"crossref","unstructured":"Schelter, S., Rukat, T., Bie\u00dfmann, F.: Learning to validate the predictions of black box classifiers on unseen data. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 1289\u20131299 (2020)","DOI":"10.1145\/3318464.3380604"},{"key":"16_CR26","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1002\/path.5662","volume":"254","author":"LM Silva","year":"2021","unstructured":"Silva, L.M., et al.: Independent real-world application of a clinical-grade automated prostate cancer detection system. J. Pathol. 254, 147\u2013158 (2021)","journal-title":"J. Pathol."},{"key":"16_CR27","doi-asserted-by":"crossref","unstructured":"Song, R., Cao, P., Yang, J., Zhao, D., Zaiane, O.R.: A domain adaptation multi-instance learning for diabetic retinopathy grading on retinal images. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 743\u2013750. IEEE (2020)","DOI":"10.1109\/BIBM49941.2020.9313398"},{"key":"16_CR28","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1109\/JBHI.2020.3032060","volume":"25","author":"K Stacke","year":"2021","unstructured":"Stacke, K., Eilertsen, G., Unger, J., Lundstrom, C.: Measuring domain shift for deep learning in histopathology. IEEE J. Biomed. Health Inform. 25, 325\u2013326 (2021)","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"16_CR29","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102462","volume":"79","author":"Z Su","year":"2022","unstructured":"Su, Z., et al.: Attention2majority: weak multiple instance learning for regenerative kidney grading on whole slide images. Med. Image Anal. 79, 102462 (2022)","journal-title":"Med. Image Anal."},{"key":"16_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"824","DOI":"10.1007\/978-3-030-59710-8_80","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"J Thagaard","year":"2020","unstructured":"Thagaard, J., Hauberg, S., van der Vegt, B., Ebstrup, T., Hansen, J.D., Dahl, A.B.: Can you trust predictive uncertainty under real dataset shifts in digital pathology? In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 824\u2013833. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59710-8_80"},{"key":"16_CR31","doi-asserted-by":"crossref","unstructured":"Tomani, C., Gruber, S., Erdem, M.E., Cremers, D., Buettner, F.: Post-hoc uncertainty calibration for domain drift scenarios. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10124\u201310132 (2021)","DOI":"10.1109\/CVPR46437.2021.00999"},{"issue":"1","key":"16_CR32","first-page":"1","volume":"11","author":"L Xiaofeng","year":"2022","unstructured":"Xiaofeng, L., et al.: Deep unsupervised domain adaptation: a review of recent advances and perspectives. APSIPA Trans. Signal Inf. Process. 11(1), 1\u201310 (2022)","journal-title":"APSIPA Trans. Signal Inf. Process."},{"key":"16_CR33","unstructured":"Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. arXiv preprint arXiv:2110.11334 (2021)"},{"key":"16_CR34","doi-asserted-by":"crossref","unstructured":"Zhou, K., et al.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2022)","DOI":"10.1109\/TPAMI.2022.3195549"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43904-9_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T19:16:59Z","timestamp":1730229419000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43904-9_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439032","9783031439049"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43904-9_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}