{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T05:27:01Z","timestamp":1743139621724,"version":"3.40.3"},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439001"},{"type":"electronic","value":"9783031439018"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43901-8_41","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:08:23Z","timestamp":1696115303000},"page":"427-436","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Medical Boundary Diffusion Model for\u00a0Skin Lesion Segmentation"],"prefix":"10.1007","author":[{"given":"Jiacheng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Jing","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Qichao","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Liansheng","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"key":"41_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1007\/978-3-030-66415-2_16","volume-title":"Computer Vision \u2013 ECCV 2020 Workshops","author":"R Azad","year":"2020","unstructured":"Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Attention Deeplabv3+: multi-level context attention mechanism for skin lesion segmentation. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 251\u2013266. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-66415-2_16"},{"key":"41_CR2","doi-asserted-by":"crossref","unstructured":"Cao, W., et al.: ICL-Net: global and local inter-pixel correlations learning network for skin lesion segmentation. IEEE J. Biomed. Health Inf. 27(1), 145\u2013156 (2022)","DOI":"10.1109\/JBHI.2022.3162342"},{"key":"41_CR3","unstructured":"Chen, J., et al.: TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)"},{"key":"41_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"715","DOI":"10.1007\/978-3-030-78191-0_55","volume-title":"Information Processing in Medical Imaging","author":"S Czolbe","year":"2021","unstructured":"Czolbe, S., Arnavaz, K., Krause, O., Feragen, A.: Is segmentation uncertainty useful? In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 715\u2013726. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-78191-0_55"},{"key":"41_CR5","unstructured":"DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. arXiv preprint arXiv:1807.00502 (2018)"},{"key":"41_CR6","first-page":"8780","volume":"34","author":"P Dhariwal","year":"2021","unstructured":"Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural Inf. Process. Syst. 34, 8780\u20138794 (2021)","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"2","key":"41_CR7","doi-asserted-by":"publisher","first-page":"699","DOI":"10.1109\/TMI.2020.3035253","volume":"40","author":"R Gu","year":"2020","unstructured":"Gu, R., et al.: Ca-net: Comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans. Med. Imaging 40(2), 699\u2013711 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"41_CR8","unstructured":"Gutman, D., et al.: Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397 (2016)"},{"key":"41_CR9","first-page":"6840","volume":"33","author":"J Ho","year":"2020","unstructured":"Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840\u20136851 (2020)","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"2","key":"41_CR10","doi-asserted-by":"publisher","first-page":"527","DOI":"10.1109\/JBHI.2018.2859898","volume":"23","author":"H Li","year":"2018","unstructured":"Li, H., et al.: Dense deconvolutional network for skin lesion segmentation. IEEE J. Biomed. Health Inf. 23(2), 527\u2013537 (2018)","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"41_CR11","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117\u20132125 (2017)","DOI":"10.1109\/CVPR.2017.106"},{"issue":"12","key":"41_CR12","doi-asserted-by":"publisher","first-page":"3868","DOI":"10.1109\/TMI.2020.3006437","volume":"39","author":"A Mehrtash","year":"2020","unstructured":"Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868\u20133878 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"41_CR13","doi-asserted-by":"crossref","unstructured":"Mendon\u00e7a, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH 2-A dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437\u20135440. IEEE (2013)","DOI":"10.1109\/EMBC.2013.6610779"},{"key":"41_CR14","unstructured":"Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162\u20138171. PMLR (2021)"},{"key":"41_CR15","doi-asserted-by":"crossref","unstructured":"Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684\u201310695 (2022)","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"41_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"41_CR17","doi-asserted-by":"crossref","unstructured":"Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA: Cancer J. Clin. 72(1), 7\u201333 (2022)","DOI":"10.3322\/caac.21708"},{"key":"41_CR18","doi-asserted-by":"crossref","unstructured":"Wang, J., et al.: XBound-former: toward cross-scale boundary modeling in transformers. IEEE Trans. Med. Imaging 42(6), 1735\u20131745 (2023)","DOI":"10.1109\/TMI.2023.3236037"},{"key":"41_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1007\/978-3-030-87193-2_20","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"J Wang","year":"2021","unstructured":"Wang, J., Wei, L., Wang, L., Zhou, Q., Zhu, L., Qin, J.: Boundary-aware transformers for skin lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 206\u2013216. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87193-2_20"},{"key":"41_CR20","doi-asserted-by":"crossref","unstructured":"Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 568\u2013578 (2021)","DOI":"10.1109\/ICCV48922.2021.00061"},{"issue":"1","key":"41_CR21","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1109\/TMI.2020.3027341","volume":"40","author":"H Wu","year":"2020","unstructured":"Wu, H., Pan, J., Li, Z., Wen, Z., Qin, J.: Automated skin lesion segmentation via an adaptive dual attention module. IEEE Trans. Med. Imaging 40(1), 357\u2013370 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"41_CR22","unstructured":"Wu, J., Fang, H., Zhang, Y., Yang, Y., Xu, Y.: MedSegDiff: Medical image segmentation with diffusion probabilistic model. arXiv preprint arXiv:2211.00611 (2022)"},{"key":"41_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1007\/978-3-030-87193-2_2","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"Y Zhang","year":"2021","unstructured":"Zhang, Y., Liu, H., Hu, Q.: TransFuse: fusing transformers and CNNs for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14\u201324. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87193-2_2"},{"key":"41_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-00889-5_1","volume-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","author":"Z Zhou","year":"2018","unstructured":"Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA\/ML-CDS -2018. LNCS, vol. 11045, pp. 3\u201311. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00889-5_1"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43901-8_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,11]],"date-time":"2024-03-11T15:23:02Z","timestamp":1710170582000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43901-8_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439001","9783031439018"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43901-8_41","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}