{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:16:43Z","timestamp":1728177403506},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439001"},{"type":"electronic","value":"9783031439018"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43901-8_13","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:08:23Z","timestamp":1696115303000},"page":"130-140","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["MI-SegNet: Mutual Information-Based US Segmentation for\u00a0Unseen Domain Generalization"],"prefix":"10.1007","author":[{"given":"Yuan","family":"Bi","sequence":"first","affiliation":[]},{"given":"Zhongliang","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Ricarda","family":"Clarenbach","sequence":"additional","affiliation":[]},{"given":"Reza","family":"Ghotbi","sequence":"additional","affiliation":[]},{"given":"Angelos","family":"Karlas","sequence":"additional","affiliation":[]},{"given":"Nassir","family":"Navab","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"key":"13_CR1","unstructured":"Belghazi, M.I., et al.: Mutual information neural estimation. In: International Conference on Machine Learning, pp. 531\u2013540. PMLR (2018)"},{"issue":"8","key":"13_CR2","doi-asserted-by":"publisher","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","volume":"35","author":"Y Bengio","year":"2013","unstructured":"Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798\u20131828 (2013)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"13_CR3","doi-asserted-by":"publisher","unstructured":"Cha, J., Lee, K., Park, S., Chun, S.: Domain generalization by mutual-information regularization with pre-trained models. In: Avidan, S., Brostow, G., Ciss\u00e9, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13683, pp. 440\u2013457. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-20050-2_26","DOI":"10.1007\/978-3-031-20050-2_26"},{"issue":"7","key":"13_CR4","doi-asserted-by":"publisher","first-page":"2494","DOI":"10.1109\/TMI.2020.2972701","volume":"39","author":"C Chen","year":"2020","unstructured":"Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imag. 39(7), 2494\u20132505 (2020)","journal-title":"IEEE Trans. Med. Imag."},{"issue":"2","key":"13_CR5","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1002\/cpa.3160360204","volume":"36","author":"MD Donsker","year":"1983","unstructured":"Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. IV. Commun. Pure Appl. Math. 36(2), 183\u2013212 (1983)","journal-title":"Commun. Pure Appl. Math."},{"key":"13_CR6","doi-asserted-by":"crossref","unstructured":"Huang, D., Bi, Y., Navab, N., Jiang, Z.: Motion magnification in robotic sonography: enabling pulsation-aware artery segmentation. arXiv preprint arXiv:2307.03698 (2023)","DOI":"10.1109\/IROS55552.2023.10342220"},{"key":"13_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1007\/978-3-030-01219-9_11","volume-title":"Computer Vision \u2013 ECCV 2018","author":"X Huang","year":"2018","unstructured":"Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 172\u2013189. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01219-9_11"},{"key":"13_CR8","doi-asserted-by":"publisher","unstructured":"Huang, Y., et al.: Online Reflective learning for robust medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13438, pp. 652\u2013662. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16452-1_62","DOI":"10.1007\/978-3-031-16452-1_62"},{"key":"13_CR9","doi-asserted-by":"crossref","unstructured":"Jiang, Z., Duelmer, F., Navab, N.: DopUS-Net: quality-aware robotic ultrasound imaging based on doppler signal. IEEE Trans. Autom. Sci. Eng. (2023)","DOI":"10.1109\/TASE.2023.3277331"},{"issue":"6","key":"13_CR10","doi-asserted-by":"publisher","first-page":"066138","DOI":"10.1103\/PhysRevE.69.066138","volume":"69","author":"A Kraskov","year":"2004","unstructured":"Kraskov, A., St\u00f6gbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)","journal-title":"Phys. Rev. E"},{"key":"13_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1007\/978-3-030-01246-5_3","volume-title":"Computer Vision \u2013 ECCV 2018","author":"H-Y Lee","year":"2018","unstructured":"Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36\u201352. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01246-5_3"},{"key":"13_CR12","unstructured":"Lezama, J.: Overcoming the disentanglement vs reconstruction trade-off via Jacobian supervision. In: International Conference on Learning Representations (2018)"},{"issue":"9","key":"13_CR13","first-page":"5243","volume":"44","author":"X Liu","year":"2021","unstructured":"Liu, X., Yang, C., You, J., Kuo, C.C.J., Kumar, B.V.: Mutual information regularized feature-level Frankenstein for discriminative recognition. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5243\u20135260 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"13_CR14","doi-asserted-by":"publisher","first-page":"722","DOI":"10.1109\/TMI.2020.3035424","volume":"40","author":"Q Meng","year":"2020","unstructured":"Meng, Q., et al.: Mutual information-based disentangled neural networks for classifying unseen categories in different domains: application to fetal ultrasound imaging. IEEE Trans. Med. Imag. 40(2), 722\u2013734 (2020)","journal-title":"IEEE Trans. Med. Imag."},{"key":"13_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"492","DOI":"10.1007\/978-3-030-78191-0_38","volume-title":"Information Processing in Medical Imaging","author":"M Ning","year":"2021","unstructured":"Ning, M., et al.: A new bidirectional unsupervised domain adaptation segmentation framework. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 492\u2013503. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-78191-0_38"},{"key":"13_CR16","unstructured":"Peng, X., Huang, Z., Sun, X., Saenko, K.: Domain agnostic learning with disentangled representations. In: International Conference on Machine Learning, pp. 5102\u20135112. PMLR (2019)"},{"issue":"10","key":"13_CR17","doi-asserted-by":"publisher","first-page":"1887","DOI":"10.1016\/j.ultrasmedbio.2013.04.013","volume":"39","author":"K \u0158\u00edha","year":"2013","unstructured":"\u0158\u00edha, K., Ma\u0161ek, J., Burget, R., Bene\u0161, R., Z\u00e1vodn\u00e1, E.: Novel method for localization of common carotid artery transverse section in ultrasound images using modified Viola-Jones detector. Ultrasound Med. Biol. 39(10), 1887\u20131902 (2013)","journal-title":"Ultrasound Med. Biol."},{"key":"13_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"13_CR19","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1016\/j.media.2019.01.012","volume":"53","author":"J Schlemper","year":"2019","unstructured":"Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197\u2013207 (2019)","journal-title":"Med. Image Anal."},{"key":"13_CR20","doi-asserted-by":"publisher","first-page":"2273","DOI":"10.1109\/TMI.2022.3162111","volume":"41","author":"J Song","year":"2022","unstructured":"Song, J., et al.: Global and local feature reconstruction for medical image segmentation. IEEE Trans. Med. Imag. 41, 2273\u20132284 (2022)","journal-title":"IEEE Trans. Med. Imag."},{"key":"13_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"690","DOI":"10.1007\/978-3-030-87237-3_66","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"M Tirindelli","year":"2021","unstructured":"Tirindelli, M., Eilers, C., Simson, W., Paschali, M., Azampour, M.F., Navab, N.: Rethinking ultrasound augmentation: a physics-inspired approach. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 690\u2013700. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87237-3_66"},{"key":"13_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1007\/978-3-030-87193-2_4","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"JMJ Valanarasu","year":"2021","unstructured":"Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36\u201346. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87193-2_4"},{"issue":"11","key":"13_CR23","doi-asserted-by":"publisher","first-page":"1134","DOI":"10.1145\/1968.1972","volume":"27","author":"LG Valiant","year":"1984","unstructured":"Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134\u20131142 (1984)","journal-title":"Commun. ACM"},{"key":"13_CR24","doi-asserted-by":"publisher","unstructured":"Velikova, Y., Simson, W., Salehi, M., Azampour, M.F., Paprottka, P., Navab, N.: CACTUSS: common anatomical CT-US space for US examinations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13433, pp. 492\u2013501. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16437-8_47","DOI":"10.1007\/978-3-031-16437-8_47"},{"key":"13_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"497","DOI":"10.1007\/978-3-030-00937-3_57","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"X Yang","year":"2018","unstructured":"Yang, X., et al.: Generalizing deep models for ultrasound image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 497\u2013505. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00937-3_57"},{"issue":"3","key":"13_CR26","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1145\/3446776","volume":"64","author":"C Zhang","year":"2021","unstructured":"Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), 107\u2013115 (2021)","journal-title":"Commun. ACM"},{"issue":"7","key":"13_CR27","doi-asserted-by":"publisher","first-page":"2531","DOI":"10.1109\/TMI.2020.2973595","volume":"39","author":"L Zhang","year":"2020","unstructured":"Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imag. 39(7), 2531\u20132540 (2020)","journal-title":"IEEE Trans. Med. Imag."},{"key":"13_CR28","unstructured":"Zhao, Q., et al.: A multi-modality ovarian tumor ultrasound image dataset for unsupervised cross-domain semantic segmentation. arXiv preprint arXiv:2207.06799 (2022)"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43901-8_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,11]],"date-time":"2024-03-11T15:20:09Z","timestamp":1710170409000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43901-8_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439001","9783031439018"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43901-8_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}