{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T23:07:17Z","timestamp":1742944037955,"version":"3.40.3"},"publisher-location":"Cham","reference-count":21,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031438974"},{"type":"electronic","value":"9783031438981"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43898-1_45","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:08:23Z","timestamp":1696115303000},"page":"465-474","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Anatomical-Aware Point-Voxel Network for\u00a0Couinaud Segmentation in\u00a0Liver CT"],"prefix":"10.1007","author":[{"given":"Xukun","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Yang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Sharib","family":"Ali","sequence":"additional","affiliation":[]},{"given":"Xiao","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Mingyang","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Minghao","family":"Han","sequence":"additional","affiliation":[]},{"given":"Tao","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Zhai","sequence":"additional","affiliation":[]},{"given":"Zhiming","family":"Cui","sequence":"additional","affiliation":[]},{"given":"Peixuan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xiaoying","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Lihua","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"key":"45_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1007\/978-3-030-80432-9_18","volume-title":"Medical Image Understanding and Analysis","author":"Z Arya","year":"2021","unstructured":"Arya, Z., Ridgway, G., Jandor, A., Aljabar, P.: Deep learning-based landmark localisation in the liver for Couinaud segmentation. In: Papie\u017c, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 227\u2013237. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-80432-9_18"},{"key":"45_CR2","doi-asserted-by":"publisher","first-page":"102680","DOI":"10.1016\/j.media.2022.102680","volume":"84","author":"P Bilic","year":"2023","unstructured":"Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). Med. Image Anal. 84, 102680 (2023)","journal-title":"Med. Image Anal."},{"key":"45_CR3","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/BF01656368","volume":"6","author":"H Bismuth","year":"1982","unstructured":"Bismuth, H.: Surgical anatomy and anatomical surgery of the liver. World J. Surg. 6, 3\u20139 (1982)","journal-title":"World J. Surg."},{"key":"45_CR4","doi-asserted-by":"crossref","unstructured":"Boltcheva, D., Passat, N., Agnus, V., Jacob-Da Col, M.A., Ronse, C., Soler, L.: Automatic anatomical segmentation of the liver by separation planes. In: Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, vol. 6141, pp. 383\u2013394. SPIE (2006)","DOI":"10.1117\/12.649747"},{"issue":"141","key":"45_CR5","doi-asserted-by":"publisher","first-page":"20170387","DOI":"10.1098\/rsif.2017.0387","volume":"15","author":"T Ching","year":"2018","unstructured":"Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018)","journal-title":"J. R. Soc. Interface"},{"key":"45_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"424","DOI":"10.1007\/978-3-319-46723-8_49","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016","author":"\u00d6 \u00c7i\u00e7ek","year":"2016","unstructured":"\u00c7i\u00e7ek, \u00d6., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424\u2013432. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46723-8_49"},{"issue":"6","key":"45_CR7","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1159\/000018770","volume":"16","author":"C Couinaud","year":"1999","unstructured":"Couinaud, C.: Liver anatomy: portal (and suprahepatic) or biliary segmentation. Dig. Surg. 16(6), 459\u2013467 (1999)","journal-title":"Dig. Surg."},{"key":"45_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1007\/978-3-540-79490-5_33","volume-title":"Medical Imaging and Informatics","author":"S Huang","year":"2008","unstructured":"Huang, S., Wang, B., Cheng, M., Wu, W., Huang, X., Ju, Y.: A fast method to segment the liver according to Couinaud\u2019s classification. In: Gao, X., M\u00fcller, H., Loomes, M.J., Comley, R., Luo, S. (eds.) MIMI 2007. LNCS, vol. 4987, pp. 270\u2013276. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-79490-5_33"},{"issue":"1","key":"45_CR9","first-page":"16","volume":"16","author":"X Jia","year":"2022","unstructured":"Jia, X., et al.: Boundary-aware dual attention guided liver segment segmentation model. KSII Trans. Internet Inf. Syst. (TIIS) 16(1), 16\u201337 (2022)","journal-title":"KSII Trans. Internet Inf. Syst. (TIIS)"},{"key":"45_CR10","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","volume":"42","author":"G Litjens","year":"2017","unstructured":"Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60\u201388 (2017)","journal-title":"Med. Image Anal."},{"key":"45_CR11","doi-asserted-by":"publisher","first-page":"6221","DOI":"10.2147\/CMAR.S247648","volume":"12","author":"X Liu","year":"2020","unstructured":"Liu, X., et al.: Secular trend of cancer death and incidence in 29 cancer groups in china, 1990\u20132017: a joinpoint and age-period-cohort analysis. Cancer Manage. Res. 12, 6221 (2020)","journal-title":"Cancer Manage. Res."},{"key":"45_CR12","unstructured":"Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3d deep learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"issue":"1","key":"45_CR13","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1148\/radiology.176.1.2353115","volume":"176","author":"R Nelson","year":"1990","unstructured":"Nelson, R., Chezmar, J., Sugarbaker, P., Murray, D., Bernardino, M.: Preoperative localization of focal liver lesions to specific liver segments: utility of CT during arterial portography. Radiology 176(1), 89\u201394 (1990)","journal-title":"Radiology"},{"issue":"1","key":"45_CR14","doi-asserted-by":"publisher","first-page":"107327481774462","DOI":"10.1177\/1073274817744621","volume":"25","author":"ST Orcutt","year":"2018","unstructured":"Orcutt, S.T., Anaya, D.A.: Liver resection and surgical strategies for management of primary liver cancer. Cancer Control 25(1), 1073274817744621 (2018)","journal-title":"Cancer Control"},{"key":"45_CR15","doi-asserted-by":"crossref","unstructured":"Pla-Alemany, S., Romero, J.A., Santab\u00e1rbara, J.M., Aliaga, R., Maceira, A.M., Moratal, D.: Automatic multi-atlas liver segmentation and Couinaud classification from CT volumes. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2826\u20132829. IEEE (2021)","DOI":"10.1109\/EMBC46164.2021.9630668"},{"key":"45_CR16","unstructured":"Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"45_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"45_CR18","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1146\/annurev-bioeng-071516-044442","volume":"19","author":"D Shen","year":"2017","unstructured":"Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221\u2013248 (2017)","journal-title":"Ann. Rev. Biomed. Eng."},{"issue":"3","key":"45_CR19","doi-asserted-by":"publisher","first-page":"131","DOI":"10.3109\/10929080109145999","volume":"6","author":"L Soler","year":"2001","unstructured":"Soler, L., et al.: Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput. Aided Surg. 6(3), 131\u2013142 (2001)","journal-title":"Comput. Aided Surg."},{"key":"45_CR20","unstructured":"Soler, L., et al.: 3D image reconstruction for comparison of algorithm database: a patient specific anatomical and medical image database. IRCAD, Strasbourg, France, Technical report, 1(1) (2010)"},{"key":"45_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"274","DOI":"10.1007\/978-3-030-32692-0_32","volume-title":"Machine Learning in Medical Imaging","author":"J Tian","year":"2019","unstructured":"Tian, J., Liu, L., Shi, Z., Xu, F.: Automatic Couinaud segmentation from CT volumes on liver using GLC-UNet. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 274\u2013282. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32692-0_32"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43898-1_45","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,11]],"date-time":"2024-03-11T14:24:43Z","timestamp":1710167083000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43898-1_45"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031438974","9783031438981"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43898-1_45","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}