{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T04:19:13Z","timestamp":1742962753726,"version":"3.40.3"},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031436697"},{"type":"electronic","value":"9783031436703"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43670-3_38","type":"book-chapter","created":{"date-parts":[[2023,9,13]],"date-time":"2023-09-13T08:02:35Z","timestamp":1694592155000},"page":"548-562","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["NSGA-II for\u00a0Solving a\u00a0Multi-objective, Sustainable and\u00a0Flexible Job Shop Scheduling Problem"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-7856-0011","authenticated-orcid":false,"given":"Candice","family":"Destouet","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6761-8265","authenticated-orcid":false,"given":"Houda","family":"Tlahig","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0997-9529","authenticated-orcid":false,"given":"Belgacem","family":"Bettayeb","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1049-2654","authenticated-orcid":false,"given":"B\u00e9lahc\u00e8ne","family":"Mazari","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,14]]},"reference":[{"key":"38_CR1","doi-asserted-by":"crossref","unstructured":"Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L.: Industry 4.0 and industry 5.0-inception, conception and perception. J. Manuf. Syst. (2021)","DOI":"10.1016\/j.jmsy.2021.10.006"},{"key":"38_CR2","doi-asserted-by":"crossref","unstructured":"Parente, M., Figueira, G., Amorim, P., Marques, A.: Production scheduling in the context of industry 4.0: review and trends. Int. J. Prod. Res. 58, 5401\u20135431 (2020)","DOI":"10.1080\/00207543.2020.1718794"},{"key":"38_CR3","doi-asserted-by":"crossref","unstructured":"Occhipinti, E.: OCRA: a concise index for the assessment of exposure to repetitive movements of the upper limbs. Ergonomics 41, 1290\u20131311 (1998)","DOI":"10.1080\/001401398186315"},{"key":"38_CR4","doi-asserted-by":"publisher","first-page":"560","DOI":"10.1016\/j.jclepro.2017.10.188","volume":"174","author":"G Gong","year":"2018","unstructured":"Gong, G., Deng, Q., Gong, X., Liu, W., Ren, Q.: A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators. J. Clean. Prod. 174, 560\u2013576 (2018)","journal-title":"J. Clean. Prod."},{"key":"38_CR5","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1049\/cim2.12003","volume":"3","author":"L Hongyu","year":"2021","unstructured":"Hongyu, L., Xiuli, W.: A survival duration-guided NSGA-III for sustainable flexible job shop scheduling problem considering dual resources. IET Collaborative Intell. Manuf. 3, 119\u2013130 (2021)","journal-title":"IET Collaborative Intell. Manuf."},{"key":"38_CR6","doi-asserted-by":"publisher","first-page":"146","DOI":"10.1016\/j.jclepro.2018.10.193","volume":"209","author":"G Coca","year":"2019","unstructured":"Coca, G., Castrill\u00f3n, O., Ruiz, S., Mateo-Sanz, J., Jim\u00e9nez, L.: Sustainable evaluation of environmental and occupational risks scheduling flexible job shop manufacturing systems. J. Cleaner Prod. 209, 146\u2013168 (2019)","journal-title":"J. Cleaner Prod."},{"issue":"2","key":"38_CR7","doi-asserted-by":"publisher","first-page":"463","DOI":"10.1007\/s10898-021-00992-6","volume":"79","author":"SM Homayouni","year":"2021","unstructured":"Homayouni, S.M., Fontes, D.B.M.M.: Production and transport scheduling in flexible job shop manufacturing systems. J. Global Optim. 79(2), 463\u2013502 (2021). https:\/\/doi.org\/10.1007\/s10898-021-00992-6","journal-title":"J. Global Optim."},{"key":"38_CR8","doi-asserted-by":"crossref","unstructured":"Sanogo, K., Mekhalef Benhafssa, A., Sahnoun, M., Bettayeb, B., Abderrahim, M., Bekrar, A.: A multi-agent system simulation based approach for collision avoidance in integrated job-shop scheduling problem with transportation tasks. J. Manuf. Syst. 68, 209\u2013226 (2023)","DOI":"10.1016\/j.jmsy.2023.03.011"},{"key":"38_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.cie.2021.107557","volume":"160","author":"W Tan","year":"2021","unstructured":"Tan, W., Yuan, X., Wang, J., Zhang, X.: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: an application from casting workshop. Comput. Ind. Eng. 160, 107557 (2021)","journal-title":"Comput. Ind. Eng."},{"key":"38_CR10","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1109\/4235.996017","volume":"6","author":"K Deb","year":"2002","unstructured":"Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182\u2013197 (2002)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"38_CR11","doi-asserted-by":"publisher","first-page":"3117","DOI":"10.1007\/s11192-022-04370-1","volume":"127","author":"S Grabowska","year":"2022","unstructured":"Grabowska, S., Saniuk, S., Gajdzik, B.: Industry 5.0: improving humanization and sustainability of industry 4.0. Scientometrics 127, 3117\u20133144 (2022)","journal-title":"Scientometrics"},{"key":"38_CR12","doi-asserted-by":"publisher","DOI":"10.1016\/j.cor.2022.105731","volume":"142","author":"H Xiong","year":"2022","unstructured":"Xiong, H., Shi, S., Ren, D., Hu, J.: A survey of job shop scheduling problem: the types and models. Comput. Oper. Res. 142, 105731 (2022)","journal-title":"Comput. Oper. Res."},{"key":"38_CR13","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/j.jmsy.2023.01.004","volume":"67","author":"C Destouet","year":"2023","unstructured":"Destouet, C., Tlahig, H., Bettayeb, B., Mazari, B.: Flexible job shop scheduling problem under industry 5.0: a survey on human reintegration, environmental consideration and resilience improvement. J. Manuf. Syst. 67, 155\u2013173 (2023)","journal-title":"J. Manuf. Syst."},{"key":"38_CR14","doi-asserted-by":"publisher","first-page":"1365","DOI":"10.1016\/j.jclepro.2019.06.151","volume":"234","author":"S Luo","year":"2019","unstructured":"Luo, S., Zhang, L., Fan, Y.: Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization. J. Clean. Prod. 234, 1365\u20131384 (2019)","journal-title":"J. Clean. Prod."},{"key":"38_CR15","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1504\/IJDSS.2016.081737","volume":"2","author":"M Sano","year":"2016","unstructured":"Sano, M., Nagao, M., Morinaga, Y.: Balancing setup workers load of flexible job shop scheduling using hybrid genetic algorithm with tabu search strategy. Int. J. Decis. Support Syst. 2, 71\u201390 (2016)","journal-title":"Int. J. Decis. Support Syst."},{"key":"38_CR16","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.cie.2010.03.001","volume":"59","author":"M Jaber","year":"2010","unstructured":"Jaber, M., Neumann, W.: Modelling worker fatigue and recovery in dual-resource constrained systems. Comput. Ind. Eng. 59, 75\u201384 (2010)","journal-title":"Comput. Ind. Eng."},{"key":"38_CR17","doi-asserted-by":"publisher","first-page":"157003","DOI":"10.1109\/ACCESS.2019.2948057","volume":"7","author":"X Sun","year":"2019","unstructured":"Sun, X., Guo, S., Guo, J., Du, B.: A hybrid multi-objective evolutionary algorithm with heuristic adjustment strategies and variable neighborhood search for flexible job-shop scheduling problem considering flexible rest time. IEEE Access 7, 157003\u2013157018 (2019)","journal-title":"IEEE Access"},{"key":"38_CR18","doi-asserted-by":"publisher","first-page":"807","DOI":"10.1016\/j.ejor.2021.03.036","volume":"295","author":"S Xu","year":"2021","unstructured":"Xu, S., Hall, N.: Fatigue, personnel scheduling and operations: review and research opportunities. Eur. J. Oper. Res. 295, 807\u2013822 (2021)","journal-title":"Eur. J. Oper. Res."},{"key":"38_CR19","doi-asserted-by":"publisher","first-page":"1078","DOI":"10.1016\/j.jclepro.2018.10.289","volume":"209","author":"X Gong","year":"2019","unstructured":"Gong, X., De Pessemier, T., Martens, L., Joseph, W.: Energy- and labor-aware flexible job shop scheduling under dynamic electricity pricing: a many-objective optimization investigation. J. Cleaner Prod. 209, 1078\u20131094 (2019)","journal-title":"J. Cleaner Prod."},{"key":"38_CR20","doi-asserted-by":"publisher","first-page":"912","DOI":"10.1016\/j.camwa.2011.11.057","volume":"63","author":"G Chiandussi","year":"2012","unstructured":"Chiandussi, G., Codegone, M., Ferrero, S., Varesio, F.: Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 63, 912\u2013942 (2012)","journal-title":"Comput. Math. Appl."},{"key":"38_CR21","doi-asserted-by":"publisher","DOI":"10.1016\/j.swevo.2020.100664","volume":"54","author":"G Zhang","year":"2020","unstructured":"Zhang, G., Hu, Y., Sun, J., Zhang, W.: An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints. Swarm Evol. Comput. 54, 100664 (2020)","journal-title":"Swarm Evol. Comput."},{"key":"38_CR22","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1109\/TEVC.2013.2281535","volume":"18","author":"K Deb","year":"2014","unstructured":"Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, PART I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577\u2013601 (2014)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"38_CR23","doi-asserted-by":"publisher","first-page":"106352","DOI":"10.1109\/ACCESS.2021.3098823","volume":"9","author":"X Liang","year":"2021","unstructured":"Liang, X., Chen, J., Gu, X., Huang, M.: Improved adaptive non-dominated sorting genetic algorithm with elite strategy for solving multi-objective flexible job-shop scheduling problem. IEEE Access 9, 106352\u2013106362 (2021)","journal-title":"IEEE Access"},{"key":"38_CR24","doi-asserted-by":"publisher","DOI":"10.1016\/j.rcim.2023.102534","volume":"82","author":"Q Luo","year":"2023","unstructured":"Luo, Q., Deng, Q., Xie, G., Gong, G.: A pareto-based two-stage evolutionary algorithm for flexible job shop scheduling problem with worker cooperation flexibility. Rob. Comput.-Integr. Manuf. 82, 102534 (2023)","journal-title":"Rob. Comput.-Integr. Manuf."},{"key":"38_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2022.109717","volume":"131","author":"H Wang","year":"2022","unstructured":"Wang, H., Cheng, J., Liu, C., Zhang, Y., Hu, S., Chen, L.: Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events. Appl. Soft Comput. 131, 109717 (2022)","journal-title":"Appl. Soft Comput."},{"key":"38_CR26","unstructured":"EN 1005\u20131+A1, \u201cCen\/tc 122\u201d. Ergonomie (2008)"},{"key":"38_CR27","unstructured":"I. 11228\u20133:2006, \u201cIso\/tc 159\/sc 3,\u201d. Ergonomie (2007)"},{"key":"38_CR28","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1007\/s10845-016-1246-6","volume":"30","author":"SD Akyol","year":"2019","unstructured":"Akyol, S.D., Baykaso\u011flu, A.: ErgoALWABP: a multiple-rule based constructive randomized search algorithm for solving assembly line worker assignment and balancing problem under ergonomic risk factors. J. Intell. Manuf. 30, 291\u2013302 (2019)","journal-title":"J. Intell. Manuf."},{"key":"38_CR29","doi-asserted-by":"publisher","first-page":"707","DOI":"10.4028\/www.scientific.net\/AMM.521.707","volume":"521","author":"W Song","year":"2014","unstructured":"Song, W., Zhang, C., Lin, W., Shao, X.: Flexible job-shop scheduling problem with maintenance activities considering energy consumption. Appl. Mech. Mater. 521, 707\u2013713 (2014)","journal-title":"Appl. Mech. Mater."},{"key":"38_CR30","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0167427","volume":"11","author":"X Yang","year":"2016","unstructured":"Yang, X., Zeng, Z., Wang, R., Sun, X.: Bi-objective flexible job-shop scheduling problem considering energy consumption under stochastic processing times. PLOS ONE 11, e0167427 (2016)","journal-title":"PLOS ONE"},{"key":"38_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1155\/2018\/9270802","volume":"2018","author":"M Amjad","year":"2018","unstructured":"Amjad, M., et al.: Recent research trends in genetic algorithm based flexible job shop scheduling problems. Mathe. Probl. Eng. 2018, 1\u201332 (2018)","journal-title":"Mathe. Probl. Eng."},{"key":"38_CR32","doi-asserted-by":"crossref","unstructured":"Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Sched. Control Intell. Forecast. Fault Diagn. 60, 245\u2013276 (2002)","DOI":"10.1016\/S0378-4754(02)00019-8"}],"container-title":["IFIP Advances in Information and Communication Technology","Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43670-3_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,13]],"date-time":"2023-09-13T08:08:25Z","timestamp":1694592505000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43670-3_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031436697","9783031436703"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43670-3_38","relation":{},"ISSN":["1868-4238","1868-422X"],"issn-type":[{"type":"print","value":"1868-4238"},{"type":"electronic","value":"1868-422X"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"14 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"APMS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"IFIP International Conference on Advances in Production Management Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Trondheim","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Norway","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"apms2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.apms-conference.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}