{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:52:39Z","timestamp":1726228359050},"publisher-location":"Cham","reference-count":20,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031431470"},{"type":"electronic","value":"9783031431487"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43148-7_19","type":"book-chapter","created":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T20:48:35Z","timestamp":1693860515000},"page":"222-231","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improved Bilinear Pooling for\u00a0Real-Time Pose Event Camera Relocalisation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1203-7471","authenticated-orcid":false,"given":"Ahmed","family":"Tabia","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3555-7306","authenticated-orcid":false,"given":"Fabien","family":"Bonardi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2860-8128","authenticated-orcid":false,"given":"Samia","family":"Bouchafa","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,5]]},"reference":[{"issue":"12","key":"19_CR1","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","volume":"39","author":"Vijay Badrinarayanan","year":"2017","unstructured":"Badrinarayanan, Vijay, Kendall, Alex, Cipolla, Roberto: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481\u20132495 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"unstructured":"Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)","key":"19_CR2"},{"doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. IEEE (2009)","key":"19_CR3","DOI":"10.1109\/CVPR.2009.5206848"},{"doi-asserted-by":"crossref","unstructured":"Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep learning for robust RGB-D object recognition. In: 2015 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 681\u2013687. IEEE (2015)","key":"19_CR4","DOI":"10.1109\/IROS.2015.7353446"},{"issue":"2","key":"19_CR5","doi-asserted-by":"publisher","first-page":"632","DOI":"10.1109\/LRA.2016.2647639","volume":"2","author":"Guillermo Gallego","year":"2017","unstructured":"Gallego, Guillermo, Scaramuzza, Davide: Accurate angular velocity estimation with an event camera. IEEE Robot. Autom. Lett. 2(2), 632\u2013639 (2017)","journal-title":"IEEE Robot. Autom. Lett."},{"doi-asserted-by":"crossref","unstructured":"Kendall, A., Cipolla, R.: Modelling uncertainty in deep learning for camera relocalization. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4762\u20134769. IEEE (2016)","key":"19_CR6","DOI":"10.1109\/ICRA.2016.7487679"},{"doi-asserted-by":"crossref","unstructured":"Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938\u20132946 (2015)","key":"19_CR7","DOI":"10.1109\/ICCV.2015.336"},{"unstructured":"Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)","key":"19_CR8"},{"issue":"2","key":"19_CR9","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/s11263-008-0152-6","volume":"81","author":"Vincent Lepetit","year":"2009","unstructured":"Lepetit, Vincent, Moreno-Noguer, Francesc, Fua, Pascal: EPnP: an accurate o(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155\u2013166 (2009)","journal-title":"Int. J. Comput. Vis."},{"issue":"5","key":"19_CR10","doi-asserted-by":"publisher","first-page":"869","DOI":"10.3390\/rs12050869","volume":"12","author":"Ming Li","year":"2020","unstructured":"Li, Ming, Chen, Ruizhi, Liao, Xuan, Guo, Bingxuan, Zhang, Weilong, Guo, Ge.: A precise indoor visual positioning approach using a built image feature database and single user image from smartphone cameras. Remote Sens. 12(5), 869 (2020)","journal-title":"Remote Sens."},{"doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449\u20131457 (2015)","key":"19_CR11","DOI":"10.1109\/ICCV.2015.170"},{"doi-asserted-by":"crossref","unstructured":"Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 181\u2013196 (2018)","key":"19_CR12","DOI":"10.1007\/978-3-030-01216-8_12"},{"issue":"2","key":"19_CR13","doi-asserted-by":"publisher","first-page":"142","DOI":"10.1177\/0278364917691115","volume":"36","author":"Elias Mueggler","year":"2017","unstructured":"Mueggler, Elias, Rebecq, Henri, Gallego, Guillermo, Delbruck, Tobi, Scaramuzza, Davide: The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and slam. The Int. J. Robot. Res. 36(2), 142\u2013149 (2017)","journal-title":"The Int. J. Robot. Res."},{"doi-asserted-by":"crossref","unstructured":"Mur-Artal, R., Tard\u00f3s, J.D.: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255\u20131262 (2017)","key":"19_CR14","DOI":"10.1109\/TRO.2017.2705103"},{"doi-asserted-by":"crossref","unstructured":"Nguyen, A., Do, T.-T., Caldwell, D.G., Tsagarakis, N.G.: Real-time 6DOF pose relocalization for event cameras with stacked spatial LSTM networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 0\u20130 (2019)","key":"19_CR15","DOI":"10.1109\/CVPRW.2019.00207"},{"unstructured":"Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8024\u20138035 (2019)","key":"19_CR16"},{"doi-asserted-by":"crossref","unstructured":"Qu, C., Shivakumar, S.S., Miller, I.D., Taylor, C.J.: DSOL: A fast direct sparse odometry scheme. arXiv preprint arXiv:2203.08182 (2022)","key":"19_CR17","DOI":"10.1109\/IROS47612.2022.9981491"},{"doi-asserted-by":"crossref","unstructured":"Rebecq, H., Horstschaefer, T., Scaramuzza, D.: Real-time visual-inertial odometry for event cameras using keyframe-based nonlinear optimization (2017)","key":"19_CR18","DOI":"10.5244\/C.31.16"},{"doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510\u20134520 (2018)","key":"19_CR19","DOI":"10.1109\/CVPR.2018.00474"},{"unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)","key":"19_CR20"}],"container-title":["Lecture Notes in Computer Science","Image Analysis and Processing \u2013 ICIAP 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43148-7_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T16:37:54Z","timestamp":1710261474000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43148-7_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031431470","9783031431487"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43148-7_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIAP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image Analysis and Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Udine","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iciap2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iciap2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"144","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"85","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"https:\/\/iciap2023.org\/satellite-event\/workshops\/","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}