{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:54:06Z","timestamp":1726228446324},"publisher-location":"Cham","reference-count":25,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031431104"},{"type":"electronic","value":"9783031431111"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43111-1_10","type":"book-chapter","created":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T11:03:01Z","timestamp":1693825381000},"page":"103-115","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Evaluation of EEG Data for Zonal Affiliation of Brain Waves by Leads in a Robot Control Task"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5021-5411","authenticated-orcid":false,"given":"Daniyar","family":"Wolf","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5290-885X","authenticated-orcid":false,"given":"Yaroslav","family":"Turovsky","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8358-298X","authenticated-orcid":false,"given":"Anastasia","family":"Iskhakova","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1129-8434","authenticated-orcid":false,"given":"Roman","family":"Meshcheryakov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,5]]},"reference":[{"issue":"19","key":"10_CR1","doi-asserted-by":"publisher","first-page":"5474","DOI":"10.3390\/s20195474.","volume":"20","author":"D Yang","year":"2020","unstructured":"Yang, D., Nguyen, T.H., Chung, W.Y.: A bipolar-channel hybrid brain-computer interface system for home automation control utilizing steady-state visually evoked potential and eye-blink signals. Sensors (Basel) 20(19), 5474 (2020). https:\/\/doi.org\/10.3390\/s20195474.","journal-title":"Sensors (Basel)"},{"key":"10_CR2","first-page":"6011","volume":"8","author":"J-S Lin","year":"2012","unstructured":"Lin, J.-S., Yang, W.-C.: Wireless brain-computer interface for electric wheelchairs with EEG and eye-blinking signals. Int. J. Innovative Comput., Inf. Control 8, 6011\u20136024 (2012)","journal-title":"Int. J. Innovative Comput., Inf. Control"},{"key":"10_CR3","doi-asserted-by":"publisher","first-page":"603","DOI":"10.1007\/978-3-642-34546-3_98","volume-title":"Converging Clinical and Engineering Research on Neurorehabilitation","author":"S Rihana","year":"2013","unstructured":"Rihana, S., Damien, P., Moujaess, T.: EEG-Eye blink detection system for brain computer interface. In: Pons, J.L., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation, pp. 603\u2013608. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-34546-3_98"},{"key":"10_CR4","doi-asserted-by":"publisher","unstructured":"Musk, E.: An integrated brain-machine interface platform with thousands of channels. BioRxiv preprint, https:\/\/www.biorxiv.org\/content\/10.1101\/703801v4. Last accessed 31 May 2023. https:\/\/doi.org\/10.1101\/703801","DOI":"10.1101\/703801"},{"key":"10_CR5","doi-asserted-by":"publisher","first-page":"676","DOI":"10.1007\/978-3-031-20980-2_57","volume-title":"Speech and Computer: 24th International Conference, SPECOM 2022, Gurugram, India, November 14\u201316, 2022, Proceedings","author":"Y Turovsky","year":"2022","unstructured":"Turovsky, Y., Wolf, D., Meshcheryakov, R., Iskhakova, A.: Dynamics of frequency characteristics of visually evoked potentials of electroencephalography during the work with brain-computer interfaces. In: Mahadeva Prasanna, S.R., Alexey Karpov, K., Samudravijaya, S.S., Agrawal, (eds.) Speech and Computer: 24th International Conference, SPECOM 2022, Gurugram, India, November 14\u201316, 2022, Proceedings, pp. 676\u2013687. Springer International Publishing, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-20980-2_57"},{"issue":"1","key":"10_CR6","doi-asserted-by":"publisher","DOI":"10.1088\/1741-2560\/9\/1\/016008","volume":"9","author":"T Tao","year":"2011","unstructured":"Tao, T., Yi, X., Xiaorong, G., Shangkai, G.: Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential. J. Neural Eng. 9(1), 016008 (2011). https:\/\/doi.org\/10.1088\/1741-2560\/9\/1\/016008","journal-title":"J. Neural Eng."},{"key":"10_CR7","doi-asserted-by":"publisher","unstructured":"Kwak, N.-S., M\u00fcller, K.-R., Lee, S.-W.: Toward exoskeleton control based on steady state visual evoked potentials. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI 2014), pp. 1\u20132. Gangwon, Korea (2014). https:\/\/doi.org\/10.1109\/iww-BCI.2014.6782571","DOI":"10.1109\/iww-BCI.2014.6782571"},{"issue":"5","key":"10_CR8","doi-asserted-by":"publisher","first-page":"263","DOI":"10.3390\/medicina47050037","volume":"47","author":"R Balnyt\u0117","year":"2011","unstructured":"Balnyt\u0117, R., Uloziene, I., Rastenyt\u0117, D., Vaitkus, A., Malcien\u0117, L., Lau\u010dkait\u0117, K.: Diagnostic value of conventional visual evoked potentials applied to patients with multiple sclerosis. Medicina 47(5), 263\u2013269 (2011)","journal-title":"Medicina"},{"key":"10_CR9","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1007\/978-3-030-36955-2_3","volume-title":"Clinical Evoked Potentials","author":"Omkar N Markand","year":"2020","unstructured":"Markand, Omkar N.: Visual evoked potentials. In: Clinical Evoked Potentials, pp. 83\u2013137. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-36955-2_3"},{"issue":"1","key":"10_CR10","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1016\/j.rehab.2014.11.002","volume":"58","author":"U Chaudhary","year":"2015","unstructured":"Chaudhary, U., Birbaumer, N., Curado, M.R.: Brain-machine interface (BMI) in paralysis. Ann. Phys. Rehabil. Med. 58(1), 9\u201313 (2015). https:\/\/doi.org\/10.1016\/j.rehab.2014.11.002","journal-title":"Ann. Phys. Rehabil. Med."},{"key":"10_CR11","doi-asserted-by":"publisher","first-page":"493","DOI":"10.1097\/00004691-199409000-00004","volume":"11","author":"M Aminoff","year":"1994","unstructured":"Aminoff, M., Goodin, D.: Visual evoked potentials. J. Clin. Neurophysiol.: Official Publ. Am. Electroencephalographic Soc. 11, 493\u2013499 (1994). https:\/\/doi.org\/10.1097\/00004691-199409000-00004","journal-title":"J. Clin. Neurophysiol.: Official Publ. Am. Electroencephalographic Soc."},{"key":"10_CR12","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1097\/00004691-199207010-00004","volume":"9","author":"M Taylor","year":"1992","unstructured":"Taylor, M., McCulloch, D.: Visual evoked potentials in infants and children. J. Clin. Neurophysiol.: Official Publ. American Electroencephalographic Soc. 9, 357\u2013372 (1992). https:\/\/doi.org\/10.1097\/00004691-199207010-00004","journal-title":"J. Clin. Neurophysiol.: Official Publ. American Electroencephalographic Soc."},{"key":"10_CR13","doi-asserted-by":"publisher","unstructured":"Liasis, A.: Visual evoked potentials. Acta Ophthalmol. 94 (2016). https:\/\/doi.org\/10.1111\/j.1755-3768.2016.0215","DOI":"10.1111\/j.1755-3768.2016.0215"},{"key":"10_CR14","doi-asserted-by":"publisher","unstructured":"Carter, J.: Visual evoked potentials. Clinical Neurophysiology, 311\u2013322 (2011). https:\/\/doi.org\/10.1093\/med\/9780195385113.003.0022","DOI":"10.1093\/med\/9780195385113.003.0022"},{"issue":"2","key":"10_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0172578","volume":"12","author":"N-S Kwak","year":"2017","unstructured":"Kwak, N.-S., M\u00fcller, K.-R., Lee, S.-W.: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PLoS ONE 12(2), 1\u201320 (2017). https:\/\/doi.org\/10.1371\/journal.pone.0172578","journal-title":"PLoS ONE"},{"key":"10_CR16","unstructured":"Wolf, D.A., Turovsky, Y.A., Meshcheryakov, R.V., Iskhakov, A.Y., Iskhakova, A.O.: EEG signal auto encoder, computer software, https:\/\/www1.fips.ru\/iiss\/document.xhtml?faces-redirect=true&id=d4eb144baee4f995556af206cde9da36. Last accessed 31 May 2023. (In Russ.)"},{"key":"10_CR17","unstructured":"Naftali, T., Pereira, F.C., Bialek, W.: The information bottleneck method. In: Proceedings of the 37th Allerton Conference on Communication, Control and Computation, https:\/\/www.researchgate.net\/publication\/2844514_The_Information_Bottleneck_Method. Last accessed 31 May 2023"},{"key":"10_CR18","unstructured":"Nguyen, H., Bottone, S., Kim, K., Chiang, M., Poor, H.V.: Adversarial Neural Networks for Error Correcting Codes (preprint), https:\/\/www.researchgate.net\/publication\/357267696_Adversarial_Neural_Networks_for_Error_Correcting_Codes. Last accessed 31 May 2023"},{"key":"10_CR19","series-title":"Studies in Computational Intelligence","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1007\/978-981-15-6325-6_5","volume-title":"Deep Learning for Medical Decision Support Systems","author":"U Kose","year":"2021","unstructured":"Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B.: Diagnosing parkinson by using deep autoencoder neural network. In: Deep Learning for Medical Decision Support Systems. SCI, vol. 909, pp. 73\u201393. Springer, Singapore (2021). https:\/\/doi.org\/10.1007\/978-981-15-6325-6_5"},{"key":"10_CR20","doi-asserted-by":"publisher","unstructured":"Mirjalili, V., Raschka, S., Namboodiri, A., Ross, A.: Semi-adversarial networks: convolutional autoencoders for imparting privacy to face images. In: 2018 International Conference on Biometrics (ICB), pp. 82\u201389. IEEE, Gold Coast, QLD, Australia (2018). https:\/\/doi.org\/10.1109\/ICB2018.2018.00023","DOI":"10.1109\/ICB2018.2018.00023"},{"key":"10_CR21","doi-asserted-by":"publisher","unstructured":"Meshcheryakov, R.V., Wolf, D.A., Turovsky, Y.A.: An autocoder of the electrical activity of the human brain. Bulletin of the South Ural State University, Series Mathematics. Mechanics. Physics 15(1), 34\u201342 (2023). https:\/\/doi.org\/10.14529\/mmph230104. (In Russ.)","DOI":"10.14529\/mmph230104"},{"key":"10_CR22","doi-asserted-by":"publisher","unstructured":"Bicego, M., Escolano, F.: On learning random forests for random forest-clustering. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3451\u20133458. IEEE, Milan, Italy (2021). https:\/\/doi.org\/10.1109\/ICPR48806.2021.9412014","DOI":"10.1109\/ICPR48806.2021.9412014"},{"key":"10_CR23","unstructured":"Olson, M.: Essays on Random Forest Ensembles, https:\/\/repository.upenn.edu\/ dissertations\/AAI10786136\/. Last accessed 31 May 2023"},{"key":"10_CR24","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"431","DOI":"10.1007\/978-981-13-9364-8_31","volume-title":"Data Management, Analytics and Innovation","author":"A Nayyar","year":"2020","unstructured":"Nayyar, A., Mahapatra, B.: Effective classification and handling of incoming data packets in mobile Ad Hoc networks (MANETs) using random forest ensemble technique (RF\/ET). In: Sharma, N., Chakrabarti, A., Balas, V.E. (eds.) Data Management, Analytics and Innovation. AISC, vol. 1016, pp. 431\u2013444. Springer, Singapore (2020). https:\/\/doi.org\/10.1007\/978-981-13-9364-8_31"},{"key":"10_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/j.jocs.2021.101445","volume":"55","author":"A Fahim","year":"2021","unstructured":"Fahim, A.: K and starting means for k-means algorithm. J. Comput. Sci. 55, 101445 (2021). https:\/\/doi.org\/10.1016\/j.jocs.2021.101445","journal-title":"J. Comput. Sci."}],"container-title":["Lecture Notes in Computer Science","Interactive Collaborative Robotics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43111-1_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,24]],"date-time":"2023-09-24T23:05:01Z","timestamp":1695596701000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43111-1_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031431104","9783031431111"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-43111-1_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Interactive Collaborative Robotics","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Baku","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Azerbaijan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icr2023b","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Own system","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"56","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}