{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:36:53Z","timestamp":1726227413627},"publisher-location":"Cham","reference-count":34,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031427947"},{"type":"electronic","value":"9783031427954"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-42795-4_7","type":"book-chapter","created":{"date-parts":[[2023,8,23]],"date-time":"2023-08-23T12:03:07Z","timestamp":1692792187000},"page":"70-80","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["C2N-ABDP: Cluster-to-Node Attention-Based Differentiable Pooling"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4339-173X","authenticated-orcid":false,"given":"Rongji","family":"Ye","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1620-6532","authenticated-orcid":false,"given":"Lixin","family":"Cui","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6116-9761","authenticated-orcid":false,"given":"Luca","family":"Rossi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6698-6210","authenticated-orcid":false,"given":"Yue","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1147-6181","authenticated-orcid":false,"given":"Zhuo","family":"Xu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1033-8908","authenticated-orcid":false,"given":"Lu","family":"Bai","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4496-2028","authenticated-orcid":false,"given":"Edwin R.","family":"Hancock","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,24]]},"reference":[{"key":"7_CR1","unstructured":"Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018)"},{"issue":"2","key":"7_CR2","doi-asserted-by":"publisher","first-page":"783","DOI":"10.1109\/TPAMI.2020.3011866","volume":"44","author":"L Bai","year":"2022","unstructured":"Bai, L., Cui, L., Jiao, Y., Rossi, L., Hancock, E.R.: Learning backtrackless aligned-spatial graph convolutional networks for graph classification. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 783\u2013798 (2022)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"7_CR3","doi-asserted-by":"crossref","unstructured":"Bai, L., et al.: Learning graph convolutional networks based on quantum vertex information propagation (extended abstract). In: 38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9\u201312, 2022. pp. 3132\u20133133. IEEE (2022)","DOI":"10.1109\/ICDE53745.2022.00280"},{"issue":"2","key":"7_CR4","first-page":"1747","volume":"35","author":"L Bai","year":"2023","unstructured":"Bai, L., et al.: Learning graph convolutional networks based on quantum vertex information propagation. IEEE Trans. Knowl. Data Eng. 35(2), 1747\u20131760 (2023)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"7_CR5","unstructured":"Bianchi, F.M., Grattarola, D., Alippi, C.: Spectral clustering with graph neural networks for graph pooling. In: International Conference on Machine Learning, pp. 874\u2013883. PMLR (2020)"},{"key":"7_CR6","doi-asserted-by":"publisher","unstructured":"Bicciato, A., Cosmo, L., Minello, G., Rossi, L., Torsello, A.: Classifying me softly: A novel graph neural network based on features soft-alignment. In: S+SSPR. pp. 43\u201353. Springer (2022). https:\/\/doi.org\/10.1007\/978-3-031-23028-8_5","DOI":"10.1007\/978-3-031-23028-8_5"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"Borgwardt, K.M., Ong, C.S., Sch\u00f6nauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl_1), i47\u2013i56 (2005)","DOI":"10.1093\/bioinformatics\/bti1007"},{"key":"7_CR8","unstructured":"Cosmo, L., Minello, G., Bronstein, M., Rodol\u00e0, E., Rossi, L., Torsello, A.: Graph kernel neural networks. arXiv preprint arXiv:2112.07436 (2021)"},{"key":"7_CR9","doi-asserted-by":"publisher","unstructured":"Cui, L., Bai, L., Bai, X., Wang, Y., Hancock, E.R.: Learning aligned vertex convolutional networks for graph classification. IEEE Trans. Neural Netw. Learn. Syst. Press, 1808\u20131822 (2021). https:\/\/doi.org\/10.1109\/TNNLS.2021.3129649","DOI":"10.1109\/TNNLS.2021.3129649"},{"key":"7_CR10","doi-asserted-by":"crossref","unstructured":"Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786\u2013797 (1991)","DOI":"10.1021\/jm00106a046"},{"issue":"4","key":"7_CR11","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1016\/S0022-2836(03)00628-4","volume":"330","author":"PD Dobson","year":"2003","unstructured":"Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes without alignments. J. Mol. Biol. 330(4), 771\u2013783 (2003)","journal-title":"J. Mol. Biol."},{"key":"7_CR12","unstructured":"Gao, H., Ji, S.: Graph u-nets. In: International Conference on Machine Learning, pp. 2083\u20132092. PMLR (2019)"},{"key":"7_CR13","unstructured":"Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"7_CR15","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 6th International Conference on Learning Representations (2017)"},{"key":"7_CR16","unstructured":"Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. In: Proceedings of the 29th International Conference on International Conference on Machine Learning, pp. 291\u2013298 (2012)"},{"issue":"6","key":"7_CR17","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84\u201390 (2017)","journal-title":"Commun. ACM"},{"key":"7_CR18","doi-asserted-by":"crossref","unstructured":"LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253\u2013256. IEEE (2010)","DOI":"10.1109\/ISCAS.2010.5537907"},{"key":"7_CR19","unstructured":"Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International Conference On Machine Learning, pp. 3734\u20133743. PMLR (2019)"},{"key":"7_CR20","first-page":"14093","volume":"33","author":"M Li","year":"2020","unstructured":"Li, M., Chen, S., Zhang, Y., Tsang, I.: Graph cross networks with vertex infomax pooling. Adv. Neural. Inf. Process. Syst. 33, 14093\u201314105 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"7_CR21","doi-asserted-by":"crossref","unstructured":"Liu, Y., Cui, L., Wang, Y., Bai, L.: Abdpool: Attention-based differentiable pooling. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 3021\u20133026. IEEE (2022)","DOI":"10.1109\/ICPR56361.2022.9956378"},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Pang, Y., Zhao, Y., Li, D.: Graph pooling via coarsened graph infomax. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2177\u20132181 (2021)","DOI":"10.1145\/3404835.3463074"},{"key":"7_CR23","doi-asserted-by":"crossref","unstructured":"Ranjan, E., Sanyal, S., Talukdar, P.: Asap: Adaptive structure aware pooling for learning hierarchical graph representations. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 5470\u20135477 (2020)","DOI":"10.1609\/aaai.v34i04.5997"},{"key":"7_CR24","doi-asserted-by":"crossref","unstructured":"Schomburg, I., et al.: Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. 32(suppl_1), D431\u2013D433 (2004)","DOI":"10.1093\/nar\/gkh081"},{"key":"7_CR25","unstructured":"Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)"},{"key":"7_CR26","unstructured":"Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial intelligence and statistics, pp. 488\u2013495. PMLR (2009)"},{"key":"7_CR27","unstructured":"Vaswani, A.,et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"7_CR28","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations (2017)"},{"key":"7_CR29","doi-asserted-by":"publisher","first-page":"347","DOI":"10.1007\/s10115-007-0103-5","volume":"14","author":"N Wale","year":"2008","unstructured":"Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical compound retrieval and classification. Knowl. Inf. Syst. 14, 347\u2013375 (2008)","journal-title":"Knowl. Inf. Syst."},{"key":"7_CR30","unstructured":"Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6\u20139, 2019 (2019)"},{"key":"7_CR31","doi-asserted-by":"crossref","unstructured":"Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365\u20131374 (2015)","DOI":"10.1145\/2783258.2783417"},{"key":"7_CR32","unstructured":"Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: Advances in Neural Information Processing Systems, vol. 31 (2018)"},{"key":"7_CR33","doi-asserted-by":"crossref","unstructured":"Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: Proceedings of the AAAI Conference On Artificial Intelligence, vol. 32 (2018)","DOI":"10.1609\/aaai.v32i1.11782"},{"key":"7_CR34","unstructured":"Zhang, Z., et al.: Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954 (2019)"}],"container-title":["Lecture Notes in Computer Science","Graph-Based Representations in Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-42795-4_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T12:29:19Z","timestamp":1710246559000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-42795-4_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031427947","9783031427954"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-42795-4_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"24 August 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"GbRPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Graph-Based Representations in Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietri sul Mare","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"gbrpr2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/gbr2023.unisa.it","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"16","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"89% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}