{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:14:27Z","timestamp":1726229667516},"publisher-location":"Cham","reference-count":38,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031426070"},{"type":"electronic","value":"9783031426087"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-42608-7_16","type":"book-chapter","created":{"date-parts":[[2023,9,17]],"date-time":"2023-09-17T23:02:37Z","timestamp":1694991757000},"page":"198-206","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["PapagAI: Automated Feedback for\u00a0Reflective Essays"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0183-9433","authenticated-orcid":false,"given":"Veronika","family":"Solopova","sequence":"first","affiliation":[]},{"given":"Eiad","family":"Rostom","sequence":"additional","affiliation":[]},{"given":"Fritz","family":"Cremer","sequence":"additional","affiliation":[]},{"given":"Adrian","family":"Gruszczynski","sequence":"additional","affiliation":[]},{"given":"Sascha","family":"Witte","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0007-8695-5455","authenticated-orcid":false,"given":"Chengming","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Fernando Ramos","family":"L\u00f3pez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0004-7290-5068","authenticated-orcid":false,"given":"Lea","family":"Pl\u00f6\u00dfl","sequence":"additional","affiliation":[]},{"given":"Florian","family":"Hofmann","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2941-4288","authenticated-orcid":false,"given":"Ralf","family":"Romeike","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3071-2995","authenticated-orcid":false,"given":"Michaela","family":"Gl\u00e4ser-Zikuda","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3392-3093","authenticated-orcid":false,"given":"Christoph","family":"Benzm\u00fcller","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4951-5235","authenticated-orcid":false,"given":"Tim","family":"Landgraf","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,18]]},"reference":[{"key":"16_CR1","doi-asserted-by":"publisher","first-page":"111866","DOI":"10.1109\/ACCESS.2019.2934529","volume":"7","author":"E Batbaatar","year":"2019","unstructured":"Batbaatar, E., Li, M., Ryu, K.H.: Semantic-emotion neural network for emotion recognition from text. IEEE Access 7, 111866\u2013111878 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2019.2934529","journal-title":"IEEE Access"},{"key":"16_CR2","unstructured":"Becker, A.: 83 Prozent der Studenten brechen Lehramts-Studium ab. Nordkurier (2021)"},{"key":"16_CR3","unstructured":"Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O\u2019Reilly Media, Inc., Sebastopol (2009)"},{"key":"16_CR4","unstructured":"Brown, T.B., et al.: Language models are few-shot learners (2020)"},{"key":"16_CR5","unstructured":"Cevher, D., Zepf, S., Klinger, R.: Towards multimodal emotion recognition in German speech events in cars using transfer learning (2019)"},{"key":"16_CR6","doi-asserted-by":"publisher","unstructured":"Chen, Y., Yu, B., Zhang, X., Yu, Y.: Topic modeling for evaluating students\u2019 reflective writing: a case study of pre-service teachers\u2019 journals. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, LAK 2016, pp. 1\u20135. Association for Computing Machinery, New York, NY, USA (2016). https:\/\/doi.org\/10.1145\/2883851.2883951","DOI":"10.1145\/2883851.2883951"},{"key":"16_CR7","unstructured":"Chiorrini, A., Diamantini, C., Mircoli, A., Potena, D.: Emotion and sentiment analysis of tweets using bert. In: EDBT\/ICDT Workshops (2021)"},{"key":"16_CR8","doi-asserted-by":"publisher","unstructured":"De Lin, O., Gottipati, S., Ling, L.S., Shankararaman, V.: Mining informal & short student self-reflections for detecting challenging topics - a learning outcomes insight dashboard. In: 2021 IEEE Frontiers in Education Conference (FIE), pp. 1\u20139 (2021). https:\/\/doi.org\/10.1109\/FIE49875.2021.9637181","DOI":"10.1109\/FIE49875.2021.9637181"},{"key":"16_CR9","unstructured":"Ekman, P.: Basic emotions. and book of cognition and emotion 98, 16 (2023)"},{"issue":"6","key":"16_CR10","first-page":"302","volume":"188","author":"P Elands","year":"2019","unstructured":"Elands, P., Huizing, A., Kester, J., Peeters, M.M.M., Oggero, S.: Governing ethical and effective behaviour of intelligent systems: a novel framework for meaningful human control in a military context. Militaire Spectator 188(6), 302\u2013313 (2019)","journal-title":"Militaire Spectator"},{"key":"16_CR11","doi-asserted-by":"publisher","unstructured":"Fleck, R., Fitzpatrick, G.: Reflecting on reflection: framing a design landscape. In: Proceedings of the 22nd Conference of the Computer-Human Interaction Special Interest Group of Australia on Computer-Human Interaction, OZCHI 2010, pp. 216\u2013223. Association for Computing Machinery, New York, NY, USA (2010). https:\/\/doi.org\/10.1145\/1952222.1952269","DOI":"10.1145\/1952222.1952269"},{"key":"16_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s40593-020-00220-4","volume":"31","author":"M Geden","year":"2021","unstructured":"Geden, M., Emerson, A., Carpenter, D., Rowe, J.P., Azevedo, R., Lester, J.C.: Predictive student modeling in game-based learning environments with word embedding representations of reflection. Int. J. Artif. Intell. Educ. 31, 1\u201323 (2021)","journal-title":"Int. J. Artif. Intell. Educ."},{"key":"16_CR13","unstructured":"Gibbs, G., Unit, G.B.F.E.: Learning by Doing: A Guide to Teaching and Learning Methods. FEU. Oxford Brookes University, Oxford (1988)"},{"key":"16_CR14","unstructured":"Grootendorst, M.R.: Bertopic: neural topic modeling with a class-based tf-idf procedure. ArXiv (2022)"},{"key":"16_CR15","unstructured":"Guhr, O., Schumann, A.K., Bahrmann, F., B\u00f6hme, H.J.: Training a broad-coverage German sentiment classification model for dialog systems. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 1627\u20131632. European Language Resources Association, Marseille, France, May 2020. https:\/\/aclanthology.org\/2020.lrec-1.202"},{"key":"16_CR16","doi-asserted-by":"publisher","unstructured":"Jena, R.K.: Sentiment mining in a collaborative learning environment: capitalising on big data. Behav. Inf. Technol. 38(9), 986\u20131001 (2019). https:\/\/doi.org\/10.1080\/0144929X.2019.1625440","DOI":"10.1080\/0144929X.2019.1625440"},{"key":"16_CR17","doi-asserted-by":"publisher","unstructured":"Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55(12), 1\u201338 (2023). https:\/\/doi.org\/10.1145\/3571730","DOI":"10.1145\/3571730"},{"key":"16_CR18","doi-asserted-by":"crossref","unstructured":"Jung, Y., Wise, A.F.: How and how well do students reflect?: multi-dimensional automated reflection assessment in health professions education. In: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (2020)","DOI":"10.1145\/3375462.3375528"},{"key":"16_CR19","unstructured":"Klamm, C., Rehbein, I., Ponzetto, S.: Frameast: a framework for second-level agenda setting in parliamentary debates through the lense of comparative agenda topics. ParlaCLARIN III at LREC2022 (2022)"},{"key":"16_CR20","unstructured":"Klemm, K., Zorn, D.: Steigende Sch\u00fclerzahlen im Primarbereich: Lehrkr\u00e4ftemangel deutlich st\u00e4rker als von der KMK erwartet. Bertelsmann Stiftung, September 2019"},{"key":"16_CR21","doi-asserted-by":"publisher","unstructured":"Knight, S., et al.: Acawriter: a learning analytics tool for formative feedback on academic writing. J. Writing Res. 12(1), 141\u2013186 (2020). https:\/\/doi.org\/10.17239\/jowr-2020.12.01.06","DOI":"10.17239\/jowr-2020.12.01.06"},{"key":"16_CR22","doi-asserted-by":"publisher","unstructured":"Kovanovi\u0107, V., et al.: Understand students\u2019 self-reflections through learning analytics. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, LAK 2018, pp. 389\u2013398. Association for Computing Machinery, New York, NY, USA (2018). https:\/\/doi.org\/10.1145\/3170358.3170374","DOI":"10.1145\/3170358.3170374"},{"key":"16_CR23","doi-asserted-by":"publisher","first-page":"106733","DOI":"10.1016\/j.chb.2021.106733","volume":"120","author":"M Liu","year":"2021","unstructured":"Liu, M., Kitto, K., Buckingham Shum, S.: Combining factor analysis with writing analytics for the formative assessment of written reflection. Comput. Hum. Behav. 120, 106733 (2021). https:\/\/doi.org\/10.1016\/j.chb.2021.106733","journal-title":"Comput. Hum. Behav."},{"key":"16_CR24","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1007\/978-3-030-23204-7_19","volume-title":"Artificial Intelligence in Education","author":"M Liu","year":"2019","unstructured":"Liu, M., Shum, S.B., Mantzourani, E., Lucas, C.: Evaluating machine learning approaches to classify pharmacy students\u2019 reflective statements. In: Isotani, S., Mill\u00e1n, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019, Part I. LNCS (LNAI), vol. 11625, pp. 220\u2013230. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-23204-7_19"},{"key":"16_CR25","unstructured":"Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. ArXiv (2019)"},{"key":"16_CR26","unstructured":"Lui, M., Baldwin, T.: langid.py: an off-the-shelf language identification tool. In: Proceedings of the ACL 2012 System Demonstrations. pp. 25\u201330. Association for Computational Linguistics, Jeju Island, Korea (2012). https:\/\/aclanthology.org\/P12-3005"},{"key":"16_CR27","doi-asserted-by":"crossref","unstructured":"Manakul, P., Liusie, A., Gales, M.J.F.: Selfcheckgpt: zero-resource black-box hallucination detection for generative large language models (2023)","DOI":"10.18653\/v1\/2023.emnlp-main.557"},{"key":"16_CR28","unstructured":"McCallum, A.K.: Mallet: a machine learning for language toolkit. https:\/\/mallet.cs.umass.edu (2002)"},{"key":"16_CR29","doi-asserted-by":"publisher","unstructured":"Napanoy, J., Gayagay, G., Tuazon, J.: Difficulties encountered by pre-service teachers: basis of a pre-service training program. Univ. J. Educ. Res. 9, 342\u2013349 (2021). https:\/\/doi.org\/10.13189\/ujer.2021.090210","DOI":"10.13189\/ujer.2021.090210"},{"key":"16_CR30","unstructured":"OpenAI: Gpt-4 technical report (2023)"},{"issue":"4\u20135","key":"16_CR31","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1177\/053901882021004003","volume":"21","author":"R Plutchik","year":"1982","unstructured":"Plutchik, R.: A psychoevolutionary theory of emotions. Soc. Sci. Inf. 21(4\u20135), 529\u2013553 (1982). https:\/\/doi.org\/10.1177\/053901882021004003","journal-title":"Soc. Sci. Inf."},{"key":"16_CR32","doi-asserted-by":"crossref","unstructured":"Schmid, H., Laws, F.: Estimation of conditional probabilities with decision trees and an application to fine-grained POS tagging. In: Proceedings of the 22nd International Conference on Computational Linguistics - COLING 2008. Association for Computational Linguistics, Morristown, NJ, USA (2008)","DOI":"10.3115\/1599081.1599179"},{"key":"16_CR33","doi-asserted-by":"publisher","unstructured":"Shashkov, A., Gold, R., Hemberg, E., Kong, B., Bell, A., O\u2019Reilly, U.M.: Analyzing student reflection sentiments and problem-solving procedures in moocs. In: Proceedings of the Eighth ACM Conference on Learning @ Scale, L@S 2021, pp. 247\u2013250. Association for Computing Machinery, New York, NY, USA (2021). https:\/\/doi.org\/10.1145\/3430895.3460150","DOI":"10.1145\/3430895.3460150"},{"key":"16_CR34","unstructured":"Sidarenka, U.: PotTS: the potsdam twitter sentiment corpus. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pp. 1133\u20131141. European Language Resources Association (ELRA), Portoro\u017e, Slovenia, May 2016. https:\/\/aclanthology.org\/L16-1181"},{"key":"16_CR35","unstructured":"Solopova, V., Popescu, O.I., Chikobava, M., Romeike, R., Landgraf, T., Benzm\u00fcller, C.: A German corpus of reflective sentences. In: Proceedings of the 18th International Conference on Natural Language Processing (ICON), pp. 593\u2013600. NLP Association of India (NLPAI), National Institute of Technology Silchar, Silchar, India, December 2021. https:\/\/aclanthology.org\/2021.icon-main.72"},{"key":"16_CR36","doi-asserted-by":"publisher","unstructured":"Ullmann, T.: Automated analysis of reflection in writing: validating machine learning approaches. Int. J. Artif. Intell. Educ. 29 (2019). https:\/\/doi.org\/10.1007\/s40593-019-00174-2","DOI":"10.1007\/s40593-019-00174-2"},{"key":"16_CR37","unstructured":"Wojatzki, M., Ruppert, E., Holschneider, S., Zesch, T., Biemann, C.: GermEval 2017: shared task on aspect-based sentiment in social media customer feedback. In: Proceedings of the GermEval 2017 - Shared Task on Aspect-based Sentiment in Social Media Customer Feedback, pp. 1\u201312. Berlin, Germany (2017)"},{"key":"16_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10956-020-09865-1","volume":"30","author":"D Wulff","year":"2020","unstructured":"Wulff, D., et al.: Computer-based classification of preservice physics teachers\u2019 written reflections. J. Sci. Educ. Technol. 30, 1\u201315 (2020)","journal-title":"J. Sci. Educ. Technol."}],"container-title":["Lecture Notes in Computer Science","KI 2023: Advances in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-42608-7_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,21]],"date-time":"2023-12-21T23:12:58Z","timestamp":1703200378000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-42608-7_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031426070","9783031426087"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-42608-7_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"18 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"German Conference on Artificial Intelligence (K\u00fcnstliche Intelligenz)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Berlin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"46","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ki2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ki2023.gi.de\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"78","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"14","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}