{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:42:11Z","timestamp":1742913731943,"version":"3.40.3"},"publisher-location":"Cham","reference-count":21,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031425288"},{"type":"electronic","value":"9783031425295"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-42529-5_16","type":"book-chapter","created":{"date-parts":[[2023,8,30]],"date-time":"2023-08-30T17:02:10Z","timestamp":1693414930000},"page":"165-173","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Machine Learning Based System for\u00a0Detecting Battery State-of-Health"],"prefix":"10.1007","author":[{"given":"\u00c1lvaro","family":"Michelena","sequence":"first","affiliation":[]},{"given":"Antonio","family":"D\u00edaz-Longueira","sequence":"additional","affiliation":[]},{"given":"M\u00edriam","family":"Timiraos","sequence":"additional","affiliation":[]},{"given":"Francisco","family":"Zayas-Gato","sequence":"additional","affiliation":[]},{"given":"H\u00e9ctor","family":"Quinti\u00e1n","sequence":"additional","affiliation":[]},{"given":"Natalia Prieto","family":"Fern\u00e1ndez","sequence":"additional","affiliation":[]},{"given":"H\u00e9ctor","family":"Alaiz-Moret\u00f3n","sequence":"additional","affiliation":[]},{"given":"Jos\u00e9 Luis","family":"Calvo-Rolle","sequence":"additional","affiliation":[]},{"given":"Mar\u00eda Teresa","family":"Garc\u00eda-Ord\u00e1s","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,31]]},"reference":[{"key":"16_CR1","doi-asserted-by":"publisher","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001). https:\/\/doi.org\/10.1023\/A:1010933404324\/METRICS, https:\/\/link.springer.com\/article\/10.1023\/A:1010933404324","DOI":"10.1023\/A:1010933404324\/METRICS"},{"issue":"7","key":"16_CR2","doi-asserted-by":"publisher","first-page":"1406","DOI":"10.3390\/pr10071406","volume":"10","author":"V L\u00f3pez","year":"2022","unstructured":"L\u00f3pez, V., et al.: Intelligent model for power cells state of charge forecasting in EV. Processes 10(7), 1406 (2022)","journal-title":"Processes"},{"issue":"1","key":"16_CR3","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.jal.2014.11.010","volume":"13","author":"JL Calvo-Rolle","year":"2015","unstructured":"Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-L\u00f3pez, M., Garc\u00eda, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Log. 13(1), 37\u201347 (2015)","journal-title":"J. Appl. Log."},{"key":"16_CR4","doi-asserted-by":"publisher","unstructured":"Cortes, C., Vapnik, V., Saitta, L.: Support-vector networks. Mach. Learn. 20(3), 273\u2013297 (1995). https:\/\/doi.org\/10.1007\/BF00994018, https:\/\/link.springer.com\/article\/10.1007\/BF00994018","DOI":"10.1007\/BF00994018"},{"key":"16_CR5","unstructured":"Energy, R.: Powering up: Global battery demand to surge by 2030, supply headaches on the horizon (2022)"},{"key":"16_CR6","doi-asserted-by":"crossref","unstructured":"Fernandez-Serantes, L., Casteleiro-Roca, J., Calvo-Rolle, J.: Hybrid intelligent system for a half-bridge converter control and soft switching ensurement. Revista Iberoamericana de Autom\u00e1tica e Inform\u00e1tica industrial (2022)","DOI":"10.1016\/j.jestch.2022.101189"},{"issue":"3","key":"16_CR7","doi-asserted-by":"publisher","first-page":"238","DOI":"10.2307\/1403797","volume":"57","author":"E Fix","year":"1989","unstructured":"Fix, E., Hodges, J.L.: Discriminatory analysis - nonparametric discrimination: consistency properties. Int. Stat. Rev. 57(3), 238 (1989). https:\/\/doi.org\/10.2307\/1403797","journal-title":"Int. Stat. Rev."},{"issue":"4","key":"16_CR8","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1093\/jigpal\/jzab011","volume":"30","author":"E Jove","year":"2022","unstructured":"Jove, E., Casteleiro-Roca, J.L., Quinti\u00e1n, H., Zayas-Gato, F., Vercelli, G., Calvo-Rolle, J.L.: A one-class classifier based on a hybrid topology to detect faults in power cells. Logic J. IGPL 30(4), 679\u2013694 (2022)","journal-title":"Logic J. IGPL"},{"key":"16_CR9","unstructured":"LiFeBATT: Lifebatt x\u20131p 8ah 38123 cell. http:\/\/www.solarvan.co.uk\/Life\/LiFeBATT8Ah.pdf"},{"key":"16_CR10","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1016\/j.ensm.2016.11.004","volume":"6","author":"G Martin","year":"2017","unstructured":"Martin, G., Rentsch, L., H\u00f6ck, M., Bertau, M.: Lithium market research-global supply, future demand and price development. Energy Storage Mater. 6, 171\u2013179 (2017)","journal-title":"Energy Storage Mater."},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"Martins, L.S., Guimar\u00e3es, L.F., Junior, A.B.B., Ten\u00f3rio, J.A.S., Espinosa, D.C.R.: Electric car battery: an overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manage. 295, 113,091 (2021)","DOI":"10.1016\/j.jenvman.2021.113091"},{"key":"16_CR12","doi-asserted-by":"crossref","unstructured":"Michelena, A., Zayas-Gato, F., Jove, E., Fontenla-Romero, O., Calvo-Rolle, J.L.: Comparative study of anomaly detection techniques for monitoring lithium iron phosphate-lifepo4 batteries. In: Proceedings of V XoveTIC Conference. XoveTIC, vol. 14, pp. 80\u201382 (2023)","DOI":"10.29007\/qd3p"},{"key":"16_CR13","doi-asserted-by":"publisher","unstructured":"Porras, S., Jove, E., Baruque, B., Calvo-Rolle, J.L.: A comparative analysis of intelligent techniques to predict energy generated by a small wind turbine from atmospheric variables. Logic J. IGPL (2022). https:\/\/doi.org\/10.1093\/jigpal\/jzac031","DOI":"10.1093\/jigpal\/jzac031"},{"key":"16_CR14","doi-asserted-by":"publisher","unstructured":"Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Gaussian Processes for Machine Learning (2005). https:\/\/doi.org\/10.7551\/MITPRESS\/3206.001.0001, https:\/\/direct.mit.edu\/books\/book\/2320\/Gaussian-Processes-for-Machine-Learning","DOI":"10.7551\/MITPRESS\/3206.001.0001"},{"issue":"6088","key":"16_CR15","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1038\/323533A0","volume":"323","author":"DE Rumelhart","year":"1986","unstructured":"Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533\u2013536 (1986). https:\/\/doi.org\/10.1038\/323533A0","journal-title":"Nature"},{"issue":"10","key":"16_CR16","doi-asserted-by":"publisher","first-page":"2638","DOI":"10.3390\/en13102638","volume":"13","author":"D Stampatori","year":"2020","unstructured":"Stampatori, D., Raimondi, P.P., Noussan, M.: Li-ion batteries: a review of a key technology for transport decarbonization. Energies 13(10), 2638 (2020)","journal-title":"Energies"},{"issue":"1","key":"16_CR17","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1038\/s43246-020-00095-x","volume":"1","author":"C Xu","year":"2020","unstructured":"Xu, C., Dai, Q., Gaines, L., Hu, M., Tukker, A., Steubing, B.: Future material demand for automotive lithium-based batteries. Commun. Mater. 1(1), 99 (2020)","journal-title":"Commun. Mater."},{"key":"16_CR18","doi-asserted-by":"publisher","DOI":"10.1093\/jigpal\/jzac040","author":"F Zayas-Gato","year":"2022","unstructured":"Zayas-Gato, F., et al.: Intelligent model for active power prediction of a small wind turbine. Logic J. IGPL (2022). https:\/\/doi.org\/10.1093\/jigpal\/jzac040","journal-title":"Logic J. IGPL"},{"key":"16_CR19","doi-asserted-by":"publisher","unstructured":"Zayas-Gato, F., et al.: A distributed topology for identifying anomalies in an industrial environment. Neural Comput. Appl. 34(23), 20463\u201320476 (2022). https:\/\/doi.org\/10.1007\/s00521-022-07106-7, https:\/\/link.springer.com\/10.1007\/s00521-022-07106-7","DOI":"10.1007\/s00521-022-07106-7"},{"key":"16_CR20","doi-asserted-by":"publisher","unstructured":"Zayas-Gato, F., Michelena, Quinti\u00e1n, H., Jove, E., Casteleiro-Roca, J.L., Leit\u00e3o, P., Luis Calvo-Rolle, J.: A novel method for anomaly detection using beta Hebbian learning and principal component analysis. Logic J. IGPL 31(2), 390\u2013399 (2022). https:\/\/doi.org\/10.1093\/jigpal\/jzac026","DOI":"10.1093\/jigpal\/jzac026"},{"key":"16_CR21","doi-asserted-by":"publisher","unstructured":"Zayas-Gato, F., et al.: A novel method for anomaly detection using beta hebbian learning and principal component analysis. Logic J. IGPL 31(2), 390\u2013399 (2023). https:\/\/doi.org\/10.1093\/jigpal\/jzac026, https:\/\/academic.oup.com\/jigpal\/article\/31\/2\/390\/6532160","DOI":"10.1093\/jigpal\/jzac026"}],"container-title":["Lecture Notes in Networks and Systems","18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023)"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-42529-5_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T05:57:51Z","timestamp":1730008671000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-42529-5_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031425288","9783031425295"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-42529-5_16","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"31 August 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SOCO","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Soft Computing Models in Industrial and Environmental Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Salamanca","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icscmiea2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2023.sococonference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}