{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:28:41Z","timestamp":1726226921958},"publisher-location":"Cham","reference-count":31,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031417337"},{"type":"electronic","value":"9783031417344"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-41734-4_15","type":"book-chapter","created":{"date-parts":[[2023,8,18]],"date-time":"2023-08-18T07:02:59Z","timestamp":1692342179000},"page":"244-258","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["SAN: Structure-Aware Network for\u00a0Complex and\u00a0Long-Tailed Chinese Text Recognition"],"prefix":"10.1007","author":[{"given":"Junyi","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Chang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Chun","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,19]]},"reference":[{"key":"15_CR1","doi-asserted-by":"crossref","unstructured":"Baek, J., et al.: What is wrong with scene text recognition model comparisons? Dataset and model analysis. In: ICCV, pp. 4714\u20134722 (2019)","DOI":"10.1109\/ICCV.2019.00481"},{"key":"15_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107488","volume":"107","author":"Z Cao","year":"2020","unstructured":"Cao, Z., Lu, J., Cui, S., Zhang, C.: Zero-shot handwritten Chinese character recognition with hierarchical decomposition embedding. Pattern Recognit. 107, 107488 (2020)","journal-title":"Pattern Recognit."},{"key":"15_CR3","doi-asserted-by":"publisher","unstructured":"Chanda, S., Baas, J., Haitink, D., Hamel, S., Stutzmann, D., Schomaker, L.: Zero-shot learning based approach for medieval word recognition using deep-learned features. In: 16th International Conference on Frontiers in Handwriting Recognition, ICFHR 2018, Niagara Falls, 5\u20138 August 2018, pp. 345\u2013350. IEEE Computer Society (2018). https:\/\/doi.org\/10.1109\/ICFHR-2018.2018.00067","DOI":"10.1109\/ICFHR-2018.2018.00067"},{"key":"15_CR4","doi-asserted-by":"publisher","unstructured":"Chanda, S., Haitink, D., Prasad, P.K., Baas, J., Pal, U., Schomaker, L.: Recognizing bengali word images - a zero-shot learning perspective. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5603\u20135610 (2021). https:\/\/doi.org\/10.1109\/ICPR48806.2021.9412607","DOI":"10.1109\/ICPR48806.2021.9412607"},{"key":"15_CR5","doi-asserted-by":"crossref","unstructured":"Chen, J., Li, B., Xue, X.: Scene text telescope: text-focused scene image super-resolution. In: 2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12021\u201312030 (2021)","DOI":"10.1109\/CVPR46437.2021.01185"},{"key":"15_CR6","doi-asserted-by":"crossref","unstructured":"Chen, J., Li, B., Xue, X.: Zero-shot Chinese character recognition with stroke-level decomposition. In: IJCAI, pp. 615\u2013621 (2021)","DOI":"10.24963\/ijcai.2021\/85"},{"key":"15_CR7","unstructured":"Chen, J., et al.: Benchmarking Chinese text recognition: datasets, baselines, and an empirical study. arXiv preprint arXiv:2112.15093 (2021)"},{"key":"15_CR8","doi-asserted-by":"crossref","unstructured":"Cheng, C., Xu, W., Bai, X., Feng, B., Liu, W.: Maximum entropy regularization and Chinese text recognition. arXiv preprint arXiv:2007.04651 (2020)","DOI":"10.1007\/978-3-030-57058-3_1"},{"key":"15_CR9","doi-asserted-by":"crossref","unstructured":"Ciresan, D.C., Meier, U.: Multi-column deep neural networks for offline handwritten chinese character classification. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20136 (2013)","DOI":"10.1109\/IJCNN.2015.7280516"},{"key":"15_CR10","doi-asserted-by":"crossref","unstructured":"Du, J., Wang, Z., Zhai, J.F., Hu, J.: Deep neural network based hidden Markov model for offline handwritten chinese text recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3428\u20133433 (2016)","DOI":"10.1109\/ICPR.2016.7900164"},{"key":"15_CR11","doi-asserted-by":"crossref","unstructured":"Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition. In: CVPR, pp. 7098\u20137107 (2021)","DOI":"10.1109\/CVPR46437.2021.00702"},{"key":"15_CR12","unstructured":"He, S., Schomaker, L.: Open set Chinese character recognition using multi-typed attributes. arXiv preprint arXiv:1808.08993 (2018)"},{"key":"15_CR13","doi-asserted-by":"crossref","unstructured":"Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: a simple and strong baseline for irregular text recognition. In: AAAI, pp. 8610\u20138617 (2019)","DOI":"10.1609\/aaai.v33i01.33018610"},{"key":"15_CR14","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1016\/j.patcog.2019.01.020","volume":"90","author":"C Luo","year":"2019","unstructured":"Luo, C., Jin, L., Sun, Z.: MORAN: a multi-object rectified attention network for scene text recognition. Pattern Recognit. 90, 109\u2013118 (2019)","journal-title":"Pattern Recognit."},{"key":"15_CR15","doi-asserted-by":"crossref","unstructured":"Qiao, Z., Zhou, Y., Yang, D., Zhou, Y., Wang, W.: SEED: semantics enhanced encoder-decoder framework for scene text recognition. In: CVPR, pp. 13525\u201313534 (2020)","DOI":"10.1109\/CVPR42600.2020.01354"},{"key":"15_CR16","doi-asserted-by":"crossref","unstructured":"Rai, A., Krishnan, N.C., Chanda, S.: Pho(sc)net: an approach towards zero-shot word image recognition in historical documents. arXiv preprint arXiv:2105.15093 (2021)","DOI":"10.1007\/978-3-030-86549-8_2"},{"issue":"11","key":"15_CR17","doi-asserted-by":"publisher","first-page":"2298","DOI":"10.1109\/TPAMI.2016.2646371","volume":"39","author":"B Shi","year":"2017","unstructured":"Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298\u20132304 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"9","key":"15_CR18","doi-asserted-by":"publisher","first-page":"2035","DOI":"10.1109\/TPAMI.2018.2848939","volume":"41","author":"B Shi","year":"2019","unstructured":"Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: ASTER: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2035\u20132048 (2019)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"15_CR19","doi-asserted-by":"publisher","first-page":"1469","DOI":"10.1109\/TPAMI.2011.264","volume":"34","author":"QF Wang","year":"2012","unstructured":"Wang, Q.F., Yin, F., Liu, C.L.: Handwritten Chinese text recognition by integrating multiple contexts. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1469\u20131481 (2012)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"15_CR20","doi-asserted-by":"publisher","first-page":"821","DOI":"10.1016\/j.patrec.2019.08.005","volume":"125","author":"T Wang","year":"2019","unstructured":"Wang, T., Xie, Z., Li, Z., Jin, L., Chen, X.: Radical aggregation network for few-shot offline handwritten Chinese character recognition. Pattern Recognit. Lett. 125, 821\u2013827 (2019)","journal-title":"Pattern Recognit. Lett."},{"key":"15_CR21","doi-asserted-by":"crossref","unstructured":"Wang, W., Shu Zhang, J., Du, J., Wang, Z., Zhu, Y.: Denseran for offline handwritten Chinese character recognition. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 104\u2013109 (2018)","DOI":"10.1109\/ICFHR-2018.2018.00027"},{"key":"15_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107722","volume":"111","author":"Z Wang","year":"2019","unstructured":"Wang, Z., Du, J.: Joint architecture and knowledge distillation in CNN for Chinese text recognition. Pattern Recognit. 111, 107722 (2019)","journal-title":"Pattern Recognit."},{"key":"15_CR23","doi-asserted-by":"crossref","unstructured":"Wang, Z., Du, J., Wang, J.: Writer-aware CNN for parsimonious hmm-based offline handwritten Chinese text recognition. arXiv preprint arXiv:1812.09809 (2018)","DOI":"10.1109\/ICFHR-2018.2018.00034"},{"key":"15_CR24","doi-asserted-by":"crossref","unstructured":"Wu, C.J., Wang, Z., Du, J., Shu Zhang, J., Wang, J.: Joint spatial and radical analysis network for distorted Chinese character recognition. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 5, pp. 122\u2013127 (2019)","DOI":"10.1109\/ICDARW.2019.40092"},{"key":"15_CR25","doi-asserted-by":"crossref","unstructured":"Wu, C., Liang Fan, W., He, Y., Sun, J., Naoi, S.: Handwritten character recognition by alternately trained relaxation convolutional neural network. In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 291\u2013296 (2014)","DOI":"10.1109\/ICFHR.2014.56"},{"key":"15_CR26","doi-asserted-by":"publisher","unstructured":"Wu, Y., Hu, X.: From textline to paragraph: a promising practice for Chinese text recognition. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FTC 2020. AISC, vol. 1288, pp. 618\u2013633. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-63128-4_48","DOI":"10.1007\/978-3-030-63128-4_48"},{"key":"15_CR27","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.patcog.2017.06.032","volume":"72","author":"X Xiao","year":"2017","unstructured":"Xiao, X., Jin, L., Yang, Y., Yang, W., Sun, J., Chang, T.: Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition. Pattern Recognit. 72, 72\u201381 (2017)","journal-title":"Pattern Recognit."},{"key":"15_CR28","doi-asserted-by":"crossref","unstructured":"Xiao, Y., Meng, D., Lu, C., Tang, C.K.: Template-instance loss for offline handwritten Chinese character recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 315\u2013322 (2019)","DOI":"10.1109\/ICDAR.2019.00058"},{"key":"15_CR29","doi-asserted-by":"crossref","unstructured":"Yin, F., Wang, Q.F., Zhang, X.Y., Liu, C.L.: ICDAR 2013 chinese handwriting recognition competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1464\u20131470 (2013)","DOI":"10.1109\/ICDAR.2013.218"},{"key":"15_CR30","doi-asserted-by":"crossref","unstructured":"Yu, D., et al.: Towards accurate scene text recognition with semantic reasoning networks. In: CVPR, pp. 12110\u201312119 (2020)","DOI":"10.1109\/CVPR42600.2020.01213"},{"key":"15_CR31","doi-asserted-by":"crossref","unstructured":"Shu Zhang, J., Zhu, Y., Du, J., Dai, L.: Ran: radical analysis networks for zero-shot learning of chinese characters. arXiv preprint arXiv:1711.01889 (2017)","DOI":"10.1109\/ICME.2018.8486456"}],"container-title":["Lecture Notes in Computer Science","Document Analysis and Recognition - ICDAR 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-41734-4_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,18]],"date-time":"2023-08-18T07:11:59Z","timestamp":1692342719000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-41734-4_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031417337","9783031417344"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-41734-4_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"19 August 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICDAR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Document Analysis and Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"San Jos\u00e9, CA","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icdar2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/icdar2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"316","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"154","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"49% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.89","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.50","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Number and type of other papers accepted : IJDAR track papers","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}