{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:43:07Z","timestamp":1740102187591,"version":"3.37.3"},"publisher-location":"Cham","reference-count":25,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031414558"},{"type":"electronic","value":"9783031414565"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-41456-5_8","type":"book-chapter","created":{"date-parts":[[2023,9,12]],"date-time":"2023-09-12T23:02:43Z","timestamp":1694559763000},"page":"97-110","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Unlocking the\u00a0Potential of\u00a0Deep Learning and\u00a0Filter Gabor for\u00a0Facial Emotion Recognition"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4741-8036","authenticated-orcid":false,"given":"Chawki","family":"Barhoumi","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3676-3670","authenticated-orcid":false,"given":"Yassine Ben","family":"Ayed","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,13]]},"reference":[{"issue":"2","key":"8_CR1","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1007\/s12530-021-09393-2","volume":"13","author":"A Boughida","year":"2022","unstructured":"Boughida, A., Kouahla, M.N., Lafifi, Y.: A novel approach for facial expression recognition based on Gabor filters and genetic algorithm. Evol. Syst. 13(2), 331\u2013345 (2022)","journal-title":"Evol. Syst."},{"key":"8_CR2","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1016\/j.ins.2021.10.005","volume":"582","author":"FZ Canal","year":"2022","unstructured":"Canal, F.Z., et al.: A survey on facial emotion recognition techniques: a state-of-the-art literature review. Inf. Sci. 582, 593\u2013617 (2022)","journal-title":"Inf. Sci."},{"key":"8_CR3","doi-asserted-by":"crossref","unstructured":"Chowdary, M.K., Nguyen, T.N., Hemanth, D.J.: Deep learning-based facial emotion recognition for human\u2013computer interaction applications. Neural Comput. Appl. 1\u201318 (2021)","DOI":"10.1007\/s00521-021-06012-8"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Dang, L.T., Cooper, E.W., Kamei, K.: Development of facial expression recognition for training video customer service representatives. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1297\u20131303. IEEE (2014)","DOI":"10.1109\/FUZZ-IEEE.2014.6891864"},{"issue":"3","key":"8_CR5","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1109\/MMUL.2012.26","volume":"19","author":"A Dhall","year":"2012","unstructured":"Dhall, A., Goecke, R., Lucey, S., Gedeon, T., et al.: Collecting large, richly annotated facial-expression databases from movies. IEEE Multimedia 19(3), 34 (2012)","journal-title":"IEEE Multimedia"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Ding, X., Chu, W.S., De la Torre, F., Cohn, J.F., Wang, Q.: Facial action unit event detection by cascade of tasks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2400\u20132407 (2013)","DOI":"10.1109\/ICCV.2013.298"},{"key":"8_CR7","doi-asserted-by":"crossref","unstructured":"Fabian Benitez-Quiroz, C., Srinivasan, R., Martinez, A.M.: Emotionet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5562\u20135570 (2016)","DOI":"10.1109\/CVPR.2016.600"},{"key":"8_CR8","series-title":"Lecture Notes in Electrical Engineering","doi-asserted-by":"publisher","first-page":"1417","DOI":"10.1007\/978-981-16-3690-5_136","volume-title":"ICDSMLA 2020","author":"DKR Gaddam","year":"2022","unstructured":"Gaddam, D.K.R., Ansari, M.D., Vuppala, S., Gunjan, V.K., Sati, M.M.: Human facial emotion detection using deep learning. In: Kumar, A., Senatore, S., Gunjan, V.K. (eds.) ICDSMLA 2020. LNEE, vol. 783, pp. 1417\u20131427. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-3690-5_136"},{"key":"8_CR9","doi-asserted-by":"crossref","unstructured":"Ilyas, B.R., Mohammed, B., Khaled, M., Ahmed, A.T., Ihsen, A.: Facial expression recognition based on dwt feature for deep CNN. In: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 344\u2013348. IEEE (2019)","DOI":"10.1109\/CoDIT.2019.8820410"},{"issue":"4","key":"8_CR10","doi-asserted-by":"publisher","first-page":"2167","DOI":"10.3390\/app13042167","volume":"13","author":"AH Jo","year":"2023","unstructured":"Jo, A.H., Kwak, K.C.: Speech emotion recognition based on two-stream deep learning model using Korean audio information. Appl. Sci. 13(4), 2167 (2023)","journal-title":"Appl. Sci."},{"issue":"2","key":"8_CR11","doi-asserted-by":"publisher","first-page":"401","DOI":"10.3390\/s18020401","volume":"18","author":"BC Ko","year":"2018","unstructured":"Ko, B.C.: A brief review of facial emotion recognition based on visual information. Sensors 18(2), 401 (2018)","journal-title":"Sensors"},{"key":"8_CR12","doi-asserted-by":"publisher","first-page":"93998","DOI":"10.1109\/ACCESS.2019.2928364","volume":"7","author":"THS Li","year":"2019","unstructured":"Li, T.H.S., Kuo, P.H., Tsai, T.N., Luan, P.C.: CNN and LSTM based facial expression analysis model for a humanoid robot. IEEE Access 7, 93998\u201394011 (2019)","journal-title":"IEEE Access"},{"issue":"10","key":"8_CR13","doi-asserted-by":"publisher","first-page":"11532","DOI":"10.1109\/JSEN.2020.3028075","volume":"21","author":"X Liu","year":"2020","unstructured":"Liu, X., Cheng, X., Lee, K.: GA-SVM-based facial emotion recognition using facial geometric features. IEEE Sens. J. 21(10), 11532\u201311542 (2020)","journal-title":"IEEE Sens. J."},{"key":"8_CR14","first-page":"1","volume":"35","author":"M Mukhopadhyay","year":"2022","unstructured":"Mukhopadhyay, M., Dey, A., Kahali, S.: A deep-learning-based facial expression recognition method using textural features. Neural Comput. Appl. 35, 1\u201316 (2022)","journal-title":"Neural Comput. Appl."},{"issue":"9","key":"8_CR15","doi-asserted-by":"publisher","first-page":"6499","DOI":"10.1007\/s00521-022-08005-7","volume":"35","author":"M Mukhopadhyay","year":"2023","unstructured":"Mukhopadhyay, M., Dey, A., Kahali, S.: A deep-learning-based facial expression recognition method using textural features. Neural Comput. Appl. 35(9), 6499\u20136514 (2023)","journal-title":"Neural Comput. Appl."},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Mukhopadhyay, M., Dey, A., Shaw, R.N., Ghosh, A.: Facial emotion recognition based on textural pattern and convolutional neural network. In: 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies, pp. 1\u20136. IEEE (2021)","DOI":"10.1109\/GUCON50781.2021.9573860"},{"issue":"4","key":"8_CR17","first-page":"269","volume":"10","author":"D Pandit","year":"2022","unstructured":"Pandit, D., Jadhav, S.: 2d face emotion recognition and prediction using labelled selective transfer machine and CNN transfer learning techniques for unbalanced datasets. Int. J. Intell. Syst. Appl. Eng. 10(4), 269\u2013277 (2022)","journal-title":"Int. J. Intell. Syst. Appl. Eng."},{"key":"8_CR18","doi-asserted-by":"crossref","unstructured":"Ravi, R., Yadhukrishna, S., et al.: A face expression recognition using CNN & LBP. In: 2020 Fourth International Conference on Computing Methodologies and Communication, pp. 684\u2013689. IEEE (2020)","DOI":"10.1109\/ICCMC48092.2020.ICCMC-000127"},{"key":"8_CR19","doi-asserted-by":"crossref","unstructured":"Suk, M., Prabhakaran, B.: Real-time facial expression recognition on smartphones. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 1054\u20131059. IEEE (2015)","DOI":"10.1109\/WACV.2015.145"},{"issue":"2","key":"8_CR20","doi-asserted-by":"publisher","first-page":"721","DOI":"10.1007\/s12652-020-02845-8","volume":"13","author":"S Umer","year":"2022","unstructured":"Umer, S., Rout, R.K., Pero, C., Nappi, M.: Facial expression recognition with trade-offs between data augmentation and deep learning features. J. Ambient. Intell. Humaniz. Comput. 13(2), 721\u2013735 (2022)","journal-title":"J. Ambient. Intell. Humaniz. Comput."},{"key":"8_CR21","unstructured":"Ververidis, D., Kotropoulos, C.: A state of the art review on emotional speech databases. In: Proceedings of 1st Richmedia Conference, pp. 109\u2013119. Citeseer (2003)"},{"key":"8_CR22","doi-asserted-by":"crossref","unstructured":"Vyas, G., Dutta, M.K., Riha, K., Prinosil, J., et al.: An automatic emotion recognizer using mfccs and hidden Markov models. In: 2015 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, pp. 320\u2013324. IEEE (2015)","DOI":"10.1109\/ICUMT.2015.7382450"},{"key":"8_CR23","unstructured":"Zadeh, M.M.T., Imani, M., Majidi, B.: Fast facial emotion recognition using convolutional neural networks and Gabor filters. In: 2019 5th Conference on Knowledge Based Engineering and Innovation, pp. 577\u2013581. IEEE (2019)"},{"issue":"5","key":"8_CR24","doi-asserted-by":"publisher","first-page":"699","DOI":"10.1109\/TPAMI.2005.93","volume":"27","author":"Y Zhang","year":"2005","unstructured":"Zhang, Y., Ji, Q.: Active and dynamic information fusion for facial expression understanding from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 699\u2013714 (2005)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"8_CR25","doi-asserted-by":"publisher","first-page":"203","DOI":"10.3934\/mfc.2022018","volume":"6","author":"X Zhu","year":"2023","unstructured":"Zhu, X., Li, Z., Sun, J.: Expression recognition method combining convolutional features and transformer. Math. Found. Comput. 6(2), 203\u2013217 (2023)","journal-title":"Math. Found. Comput."}],"container-title":["Lecture Notes in Computer Science","Computational Collective Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-41456-5_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,28]],"date-time":"2024-10-28T00:04:51Z","timestamp":1730073891000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-41456-5_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031414558","9783031414565"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-41456-5_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"13 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCCI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Collective Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Budapest","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hungary","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccci2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccci.pwr.edu.pl\/2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"218","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"59","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.01","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.86","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}