{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:55:25Z","timestamp":1726228525817},"publisher-location":"Cham","reference-count":43,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031408779"},{"type":"electronic","value":"9783031408786"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-40878-6_7","type":"book-chapter","created":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T09:03:22Z","timestamp":1693818202000},"page":"116-129","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Bottom-Up and\u00a0Top-Down Workflows for\u00a0Hypercube- And Clustering-Based Knowledge Extractors"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0532-6777","authenticated-orcid":false,"given":"Federico","family":"Sabbatini","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3794-2942","authenticated-orcid":false,"given":"Roberta","family":"Calegari","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,5]]},"reference":[{"key":"7_CR1","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1007\/s11222-013-9375-7","volume":"24","author":"O Akbilgic","year":"2014","unstructured":"Akbilgic, O., Bozdogan, H., Balaban, M.E.: A novel hybrid rbf neural networks model as a forecaster. Stat. Comput. 24, 365\u2013375 (2014)","journal-title":"Stat. Comput."},{"key":"7_CR2","unstructured":"Andrews, R., Geva, S.: RULEX & CEBP networks as the basis for a rule refinement system. In: Hallam, J. (ed.) Hybrid Problems, Hybrid Solutions, pp. 1\u201312. IOS Press (1995)"},{"key":"7_CR3","doi-asserted-by":"publisher","unstructured":"Azcarraga, A., Liu, M.D., Setiono, R.: Keyword extraction using backpropagation neural networks and rule extraction. In: The 2012 International Joint Conference on Neural Networks (IJCNN 2012), pp. 1\u20137. IEEE (2012). https:\/\/doi.org\/10.1109\/IJCNN.2012.6252618","DOI":"10.1109\/IJCNN.2012.6252618"},{"key":"7_CR4","unstructured":"Baesens, B., Setiono, R., De Lille, V., Viaene, S., Vanthienen, J.: Building credit-risk evaluation expert systems using neural network rule extraction and decision tables. In: Storey, V.C., Sarkar, S., DeGross, J.I. (eds.) ICIS 2001 Proceedings, pp. 159\u2013168. Association for Information Systems (2001). http:\/\/aisel.aisnet.org\/icis2001\/20"},{"issue":"3","key":"7_CR5","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1287\/mnsc.49.3.312.12739","volume":"49","author":"B Baesens","year":"2003","unstructured":"Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit-risk evaluation. Manage. Sci. 49(3), 312\u2013329 (2003). https:\/\/doi.org\/10.1287\/mnsc.49.3.312.12739","journal-title":"Manage. Sci."},{"issue":"5","key":"7_CR6","doi-asserted-by":"publisher","first-page":"1672","DOI":"10.5281\/zenodo.1055511","volume":"2","author":"N Barakat","year":"2008","unstructured":"Barakat, N., Diederich, J.: Eclectic rule-extraction from support vector machines. Int. J. Comput. Inform. Eng. 2(5), 1672\u20131675 (2008). https:\/\/doi.org\/10.5281\/zenodo.1055511","journal-title":"Int. J. Comput. Inform. Eng."},{"issue":"5","key":"7_CR7","doi-asserted-by":"publisher","first-page":"1156","DOI":"10.1109\/72.623216","volume":"8","author":"JM Ben\u00edtez","year":"1997","unstructured":"Ben\u00edtez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8(5), 1156\u20131164 (1997). https:\/\/doi.org\/10.1109\/72.623216","journal-title":"IEEE Trans. Neural Netw."},{"key":"7_CR8","unstructured":"Bologna, G., Pellegrini, C.: Three medical examples in neural network rule extraction. Phys. Medica 13, 183\u2013187 (1997). https:\/\/archive-ouverte.unige.ch\/unige:121360"},{"key":"7_CR9","unstructured":"Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)"},{"key":"7_CR10","doi-asserted-by":"publisher","unstructured":"Calegari, R., Sabbatini, F.: The PSyKE technology for trustworthy artificial intelligence 13796, 3\u201316 (2023). https:\/\/doi.org\/10.1007\/978-3-031-27181-6_1, XXI International Conference of the Italian Association for Artificial Intelligence, AIxIA 2022, Udine, Italy, 28 November - 2 December, Proceedings (2022)","DOI":"10.1007\/978-3-031-27181-6_1"},{"issue":"2","key":"7_CR11","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1016\/S0165-0114(99)00095-0","volume":"120","author":"LA Castillo","year":"2001","unstructured":"Castillo, L.A., Gonz\u00e1lez Mu\u00f1oz, A., P\u00e9rez, R.: Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets Syst. 120(2), 309\u2013321 (2001). https:\/\/doi.org\/10.1016\/S0165-0114(99)00095-0","journal-title":"Fuzzy Sets Syst."},{"key":"7_CR12","unstructured":"Ciatto, G., Calvaresi, D., Schumacher, M.I., Omicini, A.: An abstract framework for agent-based explanations in AI. In: El Fallah Seghrouchni, A., Sukthankar, G., An, B., Yorke-Smith, N. (eds.) 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1816\u20131818. IFAAMAS (May 2020)"},{"key":"7_CR13","doi-asserted-by":"publisher","unstructured":"Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Machine Learning Proceedings 1994, pp. 37\u201345. Elsevier (1994). https:\/\/doi.org\/10.1016\/B978-1-55860-335-6.50013-1","DOI":"10.1016\/B978-1-55860-335-6.50013-1"},{"key":"7_CR14","unstructured":"Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8, Proceedings of the 1995 Conference, pp. 24\u201330. The MIT Press (Jun 1996)"},{"issue":"2","key":"7_CR15","first-page":"191","volume":"4","author":"M Forina","year":"1988","unstructured":"Forina, M., Leardi, R., Armanino, C., Lanteri, S., Conti, P., Princi, P.: Parvus: An extendable package of programs for data exploration, classification and correlation. J. Chemom. 4(2), 191\u2013193 (1988)","journal-title":"J. Chemom."},{"key":"7_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1004","DOI":"10.1007\/978-3-540-73007-1_121","volume-title":"Computational and Ambient Intelligence","author":"L Franco","year":"2007","unstructured":"Franco, L., Subirats, J.L., Molina, I., Alba, E., Jerez, J.M.: Early breast cancer prognosis prediction and rule extraction using a new constructive neural network algorithm. In: Sandoval, F., Prieto, A., Cabestany, J., Gra\u00f1a, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1004\u20131011. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-73007-1_121"},{"issue":"5","key":"7_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3236009","volume":"51","author":"R Guidotti","year":"2018","unstructured":"Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1\u201342 (2018). https:\/\/doi.org\/10.1145\/3236009","journal-title":"ACM Comput. Surv."},{"issue":"3","key":"7_CR18","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1016\/s0933-3657(00)00064-6","volume":"20","author":"Y Hayashi","year":"2000","unstructured":"Hayashi, Y., Setiono, R., Yoshida, K.: A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders. Artif. Intell. Med. 20(3), 205\u2013216 (2000). https:\/\/doi.org\/10.1016\/s0933-3657(00)00064-6","journal-title":"Artif. Intell. Med."},{"key":"7_CR19","doi-asserted-by":"publisher","unstructured":"Hofmann, A., Schmitz, C., Sick, B.: Rule extraction from neural networks for intrusion detection in computer networks. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1259\u20131265. IEEE (2003). https:\/\/doi.org\/10.1109\/ICSMC.2003.1244584","DOI":"10.1109\/ICSMC.2003.1244584"},{"key":"7_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1007\/11823728_26","volume-title":"Data Warehousing and Knowledge Discovery","author":"J Huysmans","year":"2006","unstructured":"Huysmans, J., Baesens, B., Vanthienen, J.: ITER: an algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270\u2013279. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11823728_26"},{"key":"7_CR21","doi-asserted-by":"publisher","DOI":"10.1016\/j.artint.2021.103459","volume":"294","author":"EM Kenny","year":"2021","unstructured":"Kenny, E.M., Ford, C., Quinn, M., Keane, M.T.: Explaining black-box classifiers using post-hoc explanations-by-example: the effect of explanations and error-rates in XAI user studies. Artif. Intell. 294, 103459 (2021). https:\/\/doi.org\/10.1016\/j.artint.2021.103459","journal-title":"Artif. Intell."},{"key":"7_CR22","doi-asserted-by":"publisher","unstructured":"K\u00f6nig, R., Johansson, U., Niklasson, L.: G-REX: A versatile framework for evolutionary data mining. In: 2008 IEEE International Conference on Data Mining Workshops (ICDM 2008 Workshops), pp. 971\u2013974 (2008). https:\/\/doi.org\/10.1109\/ICDMW.2008.117","DOI":"10.1109\/ICDMW.2008.117"},{"key":"7_CR23","unstructured":"Markowska-Kaczmar, U., Trelak, W.: Extraction of fuzzy rules from trained neural network using evolutionary algorithm. In: ESANN 2003, 11th European Symposium on Artificial Neural Networks, Bruges, Belgium, 23\u201325 April 2003, Proceedings, pp. 149\u2013154 (2003). https:\/\/www.elen.ucl.ac.be\/Proceedings\/esann\/esannpdf\/es2003-9.pdf"},{"key":"7_CR24","doi-asserted-by":"publisher","unstructured":"N\u00fa\u00f1ez, H., Angulo, C., Catal\u00e0, A.: Rule extraction based on support and prototype vectors. In: Diederich, J. (ed.) Rule Extraction from Support Vector Machines. SCI, vol. 80, pp. 109\u2013134. Springer (2008). https:\/\/doi.org\/10.1007\/978-3-540-75390-2_5","DOI":"10.1007\/978-3-540-75390-2_5"},{"key":"7_CR25","unstructured":"Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. (JMLR) 12, 2825\u20132830 (2011), https:\/\/dl.acm.org\/doi\/10.5555\/1953048.2078195"},{"key":"7_CR26","doi-asserted-by":"publisher","unstructured":"Rocha, A., Papa, J.P., Meira, L.A.A.: How far do we get using machine learning black-boxes?. Int. J. Patt. Recogn. Artifi. Intell. 26(02), 1261001-(1\u201323) (2012). https:\/\/doi.org\/10.1142\/S0218001412610010","DOI":"10.1142\/S0218001412610010"},{"issue":"5","key":"7_CR27","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1038\/s42256-019-0048-x","volume":"1","author":"C Rudin","year":"2019","unstructured":"Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206\u2013215 (2019). https:\/\/doi.org\/10.1038\/s42256-019-0048-x","journal-title":"Nat. Mach. Intell."},{"key":"7_CR28","doi-asserted-by":"publisher","unstructured":"Sabbatini, F., Calegari, R.: Symbolic knowledge extraction from opaque machine learning predictors: GridREx & PEDRO. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.) Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, 31 July - 5 August (2022). https:\/\/doi.org\/10.24963\/kr.2022\/57","DOI":"10.24963\/kr.2022\/57"},{"key":"7_CR29","unstructured":"Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: On the design of PSyKE: a platform for symbolic knowledge extraction. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2021\u201322nd Workshop \u201cFrom Objects to Agents\". CEUR Workshop Proceedings, vol. 2963, pp. 29\u201348, Bologna, Italy, 1\u20133 Sep, Proceedings, Sun SITE Central Europe, RWTH Aachen University (Oct 2021)"},{"key":"7_CR30","unstructured":"Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Hypercube-based methods for symbolic knowledge extraction: Towards a unified model. In: Ferrando, A., Mascardi, V. (eds.) WOA 2022\u201323rd Workshop \u201cFrom Objects to Agents\", CEUR Workshop Proceedings, vol. 3261, pp. 48\u201360. Sun SITE Central Europe, RWTH Aachen University (Nov 2022). http:\/\/ceur-ws.org\/Vol-3261\/paper4.pdf"},{"issue":"1","key":"7_CR31","doi-asserted-by":"publisher","first-page":"27","DOI":"10.3233\/IA-210120","volume":"16","author":"F Sabbatini","year":"2022","unstructured":"Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Symbolic knowledge extraction from opaque ML predictors in PSyKE: Platform design & experiments. Intelligenza Artificiale 16(1), 27\u201348 (2022). https:\/\/doi.org\/10.3233\/IA-210120","journal-title":"Intelligenza Artificiale"},{"key":"7_CR32","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1007\/978-3-030-82017-6_2","volume-title":"Explainable and Transparent AI and Multi-Agent Systems","author":"F Sabbatini","year":"2021","unstructured":"Sabbatini, F., Ciatto, G., Omicini, A.: GridEx: an algorithm for knowledge extraction from black-box regressors. In: Calvaresi, D., Najjar, A., Winikoff, M., Fr\u00e4mling, K. (eds.) EXTRAAMAS 2021. LNCS (LNAI), vol. 12688, pp. 18\u201338. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-82017-6_2"},{"key":"7_CR33","doi-asserted-by":"publisher","unstructured":"Sabbatini, F., Ciatto, G., Omicini, A.: Semantic Web-based interoperability for intelligent agents with PSyKE. In: Calvaresi, D., Najjar, A., Winikoff, M., Fr\u00e4mling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems. LNCS, vol. 13283, chap. 8, pp. 124\u2013142. Springer (2022). https:\/\/doi.org\/10.1007\/978-3-031-15565-9_8","DOI":"10.1007\/978-3-031-15565-9_8"},{"key":"7_CR34","doi-asserted-by":"publisher","unstructured":"Sabbatini, F., Grimani, C.: Symbolic knowledge extraction from opaque predictors applied to cosmic-ray data gathered with LISA Pathfinder. Aeronau. Aerospace Open Access J. 6(3), 90\u201395 (2022). https:\/\/doi.org\/10.15406\/aaoaj.2022.06.00145","DOI":"10.15406\/aaoaj.2022.06.00145"},{"issue":"10","key":"7_CR35","doi-asserted-by":"publisher","first-page":"1279","DOI":"10.1016\/S0893-6080(02)00089-8","volume":"15","author":"K Saito","year":"2002","unstructured":"Saito, K., Nakano, R.: Extracting regression rules from neural networks. Neural Netw. 15(10), 1279\u20131288 (2002). https:\/\/doi.org\/10.1016\/S0893-6080(02)00089-8","journal-title":"Neural Netw."},{"issue":"6","key":"7_CR36","doi-asserted-by":"publisher","first-page":"1392","DOI":"10.1109\/72.809084","volume":"10","author":"GPJ Schmitz","year":"1999","unstructured":"Schmitz, G.P.J., Aldrich, C., Gouws, F.S.: ANN-DT: an algorithm for extraction of decision trees from artificial neural networks. IEEE Trans. Neural Netw. 10(6), 1392\u20131401 (1999). https:\/\/doi.org\/10.1109\/72.809084","journal-title":"IEEE Trans. Neural Netw."},{"issue":"04","key":"7_CR37","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1142\/S0129065711002821","volume":"21","author":"R Setiono","year":"2011","unstructured":"Setiono, R., Baesens, B., Mues, C.: Rule extraction from minimal neural networks for credit card screening. Int. J. Neural Syst. 21(04), 265\u2013276 (2011). https:\/\/doi.org\/10.1142\/S0129065711002821","journal-title":"Int. J. Neural Syst."},{"issue":"1\u20132","key":"7_CR38","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1023\/A:1008307919726","volume":"12","author":"R Setiono","year":"2000","unstructured":"Setiono, R., Leow, W.K.: FERNN: an algorithm for fast extraction of rules from neural networks. Appl. Intell. 12(1\u20132), 15\u201325 (2000). https:\/\/doi.org\/10.1023\/A:1008307919726","journal-title":"Appl. Intell."},{"issue":"3","key":"7_CR39","doi-asserted-by":"publisher","first-page":"564","DOI":"10.1109\/TNN.2002.1000125","volume":"13","author":"R Setiono","year":"2002","unstructured":"Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans. Neural Netw. 13(3), 564\u2013577 (2002). https:\/\/doi.org\/10.1109\/TNN.2002.1000125","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"7_CR40","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/S0925-2312(97)00038-6","volume":"17","author":"R Setiono","year":"1997","unstructured":"Setiono, R., Liu, H.: NeuroLinear: from neural networks to oblique decision rules. Neurocomputing 17(1), 1\u201324 (1997). https:\/\/doi.org\/10.1016\/S0925-2312(97)00038-6","journal-title":"Neurocomputing"},{"issue":"1","key":"7_CR41","doi-asserted-by":"publisher","first-page":"239","DOI":"10.1016\/S0377-2217(02)00792-0","volume":"155","author":"R Setiono","year":"2004","unstructured":"Setiono, R., Thong, J.Y.L.: An approach to generate rules from neural networks for regression problems. Eur. J. Oper. Res. 155(1), 239\u2013250 (2004). https:\/\/doi.org\/10.1016\/S0377-2217(02)00792-0","journal-title":"Eur. J. Oper. Res."},{"key":"7_CR42","unstructured":"Steiner, M.T.A., Steiner Neto, P.J., Soma, N.Y., Shimizu, T., Nievola, J.C.: Using neural network rule extraction for credit-risk evaluation. Int. J. Comput. Sci. Netw. Sec. 6(5A), 6\u201316 (2006). http:\/\/paper.ijcsns.org\/07_book\/200605\/200605A02.pdf"},{"key":"7_CR43","unstructured":"Thrun, S.B.: Extracting rules from artifical neural networks with distributed representations. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994]. pp. 505\u2013512. MIT Press (1994). http:\/\/papers.nips.cc\/paper\/924-extracting-rules-from-artificial-neural-networks-with-distributed-representations"}],"container-title":["Lecture Notes in Computer Science","Explainable and Transparent AI and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-40878-6_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T09:04:12Z","timestamp":1693818252000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-40878-6_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031408779","9783031408786"],"references-count":43,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-40878-6_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EXTRAAMAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"London","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 May 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 May 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"extraamas2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/extraamas.ehealth.hevs.ch\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"15","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"58% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Between 3 and 5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"~1\/2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}