{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:55:25Z","timestamp":1726228525070},"publisher-location":"Cham","reference-count":47,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031408779"},{"type":"electronic","value":"9783031408786"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-40878-6_6","type":"book-chapter","created":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T13:03:22Z","timestamp":1693832602000},"page":"97-115","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["The Quarrel of Local Post-hoc Explainers for Moral Values Classification in Natural Language Processing"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0531-1978","authenticated-orcid":false,"given":"Andrea","family":"Agiollo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7531-3154","authenticated-orcid":false,"given":"Luciano","family":"Cavalcante Siebert","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1261-6908","authenticated-orcid":false,"given":"Pradeep Kumar","family":"Murukannaiah","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6655-3869","authenticated-orcid":false,"given":"Andrea","family":"Omicini","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,9,5]]},"reference":[{"key":"6_CR1","doi-asserted-by":"publisher","unstructured":"Abnar, S., Zuidema, W.: Quantifying attention flow in transformers. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4190\u20134197. Association for Computational Linguistics, July 2020. https:\/\/doi.org\/10.18653\/v1\/2020.acl-main.385","DOI":"10.18653\/v1\/2020.acl-main.385"},{"key":"6_CR2","doi-asserted-by":"publisher","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","volume":"6","author":"A Adadi","year":"2018","unstructured":"Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138\u201352160 (2018). https:\/\/doi.org\/10.1109\/ACCESS.2018.2870052","journal-title":"IEEE Access"},{"key":"6_CR3","doi-asserted-by":"crossref","unstructured":"Agiollo, A., Ciatto, G., Omicini, A.: Graph neural networks as the copula mundi between logic and machine learning: a roadmap. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2021\u201322nd Workshop \u201cFrom Objects to Agents\u201d. CEUR Workshop Proceedings, vol. 2963, pp. 98\u2013115. Sun SITE Central Europe, RWTH Aachen University, October 2021. http:\/\/ceur-ws.org\/Vol-2963\/paper18.pdf, 22nd Workshop \u201cFrom Objects to Agents\u201d (WOA 2021), Bologna, Italy, 1\u20133 September 2021. Proceedings","DOI":"10.3233\/IA-220141"},{"key":"6_CR4","doi-asserted-by":"publisher","unstructured":"Agiollo, A., Ciatto, G., Omicini, A.: Shallow2Deep: restraining neural networks opacity through neural architecture search. In: Calvaresi, D., Najjar, A., Winikoff, M., Fr\u00e4mling, K. (eds.) Explainable and Transparent AI and Multi-agent Systems. Third International Workshop, EXTRAAMAS 2021. LNCS, vol. 12688, pp. 63\u201382. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-82017-6_5","DOI":"10.1007\/978-3-030-82017-6_5"},{"key":"6_CR5","doi-asserted-by":"publisher","unstructured":"Agiollo, A., Omicini, A.: Load classification: a case study for applying neural networks in hyper-constrained embedded devices. Appl. Sci. 11(24) (2021). https:\/\/doi.org\/10.3390\/app112411957, https:\/\/www.mdpi.com\/2076-3417\/11\/24\/11957, Special Issue \u201cArtificial Intelligence and Data Engineering in Engineering Applications\u201d","DOI":"10.3390\/app112411957"},{"key":"6_CR6","unstructured":"Agiollo, A., Omicini, A.: GNN2GNN: graph neural networks to generate neural networks. In: Cussens, J., Zhang, K. (eds.) Uncertainty in Artificial Intelligence. Proceedings of Machine Learning Research, vol. 180, pp. 32\u201342. ML Research Press, August 2022. https:\/\/proceedings.mlr.press\/v180\/agiollo22a.html, Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2022, 1\u20135 August 2022, Eindhoven, The Netherlands"},{"key":"6_CR7","unstructured":"Agiollo, A., Rafanelli, A., Omicini, A.: Towards quality-of-service metrics for symbolic knowledge injection. In: Ferrando, A., Mascardi, V. (eds.) WOA 2022\u201323rd Workshop \u201cFrom Objects to Agents\u201d, CEUR Workshop Proceedings, vol. 3261, pp. 30\u201347. Sun SITE Central Europe, RWTH Aachen University, November 2022. http:\/\/ceur-ws.org\/Vol-3261\/paper3.pdf"},{"key":"6_CR8","unstructured":"Ali, A., Schnake, T., Eberle, O., Montavon, G., M\u00fcller, K.R., Wolf, L.: XAI for transformers: better explanations through conservative propagation. In: International Conference on Machine Learning, pp. 435\u2013451. PMLR (2022). https:\/\/proceedings.mlr.press\/v162\/ali22a.html"},{"key":"6_CR9","doi-asserted-by":"publisher","unstructured":"Alshomary, M., Baff, R.E., Gurcke, T., Wachsmuth, H.: The moral debater: a study on the computational generation of morally framed arguments. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8782\u20138797. Association for Computational Linguistics, Dublin, Ireland, May 2022. https:\/\/doi.org\/10.18653\/v1\/2022.acl-long.601","DOI":"10.18653\/v1\/2022.acl-long.601"},{"key":"6_CR10","doi-asserted-by":"publisher","unstructured":"Bach, S., Binder, A., Montavon, G., Klauschen, F., M\u00fcller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS ONE 10(7), e0130140 (2015). https:\/\/doi.org\/10.1371\/journal.pone.0130140","DOI":"10.1371\/journal.pone.0130140"},{"key":"6_CR11","doi-asserted-by":"publisher","unstructured":"Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610\u2013623 (2021). https:\/\/doi.org\/10.1145\/3442188.3445922","DOI":"10.1145\/3442188.3445922"},{"key":"6_CR12","unstructured":"Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877\u20131901 (2020). https:\/\/dl.acm.org\/doi\/abs\/10.5555\/3495724.3495883"},{"issue":"4","key":"6_CR13","doi-asserted-by":"publisher","first-page":"966","DOI":"10.3390\/make3040048","volume":"3","author":"V Buhrmester","year":"2021","unstructured":"Buhrmester, V., M\u00fcnch, D., Arens, M.: Analysis of explainers of black box deep neural networks for computer vision: a survey. Mach. Learn. Knowl. Extr. 3(4), 966\u2013989 (2021). https:\/\/doi.org\/10.3390\/make3040048","journal-title":"Mach. Learn. Knowl. Extr."},{"key":"6_CR14","unstructured":"Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable AI for natural language processing. In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pp. 447\u2013459. Association for Computational Linguistics, Suzhou, China, December 2020. https:\/\/aclanthology.org\/2020.aacl-main.46"},{"key":"6_CR15","doi-asserted-by":"publisher","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171\u20134186. Association for Computational Linguistics, Minneapolis, MN, USA, June 2019. https:\/\/doi.org\/10.18653\/v1\/N19-1423","DOI":"10.18653\/v1\/N19-1423"},{"key":"6_CR16","doi-asserted-by":"publisher","unstructured":"Fr\u00e4mling, K., Westberg, M., Jullum, M., Madhikermi, M., Malhi, A.: Comparison of contextual importance and utility with LIME and Shapley values. In: Calvaresi, D., Najjar, A., Winikoff, M., Fr\u00e4mling, K. (eds.) Explainable and Transparent AI and Multi-agent Systems - Third International Workshop, EXTRAAMAS 2021. LNCS, vol. 12688, pp. 39\u201354. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-82017-6_3","DOI":"10.1007\/978-3-030-82017-6_3"},{"issue":"5","key":"6_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3236009","volume":"51","author":"R Guidotti","year":"2018","unstructured":"Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1\u201342 (2018). https:\/\/doi.org\/10.1145\/3236009","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"6_CR18","unstructured":"Hailesilassie, T.: Rule extraction algorithm for deep neural networks: a review. Int. J. Comput. Sci. Inf. Secur. 14(7), 376\u2013381 (2016). https:\/\/www.academia.edu\/28181177\/Rule_Extraction_Algorithm_for_Deep_Neural_Networks_A_Review"},{"issue":"4","key":"6_CR19","doi-asserted-by":"publisher","first-page":"2765","DOI":"10.1007\/s00521-021-06748-3","volume":"34","author":"T Hao","year":"2022","unstructured":"Hao, T., Li, X., He, Y., Wang, F.L., Qu, Y.: Recent progress in leveraging deep learning methods for question answering. Neural Comput. Appl. 34(4), 2765\u20132783 (2022). https:\/\/doi.org\/10.1007\/s00521-021-06748-3","journal-title":"Neural Comput. Appl."},{"issue":"8","key":"6_CR20","doi-asserted-by":"publisher","first-page":"1057","DOI":"10.1177\/194855061987662","volume":"11","author":"J Hoover","year":"2020","unstructured":"Hoover, J., et al.: Moral foundations Twitter corpus: a collection of 35k tweets annotated for moral sentiment. Soc. Psychol. Pers. Sci. 11(8), 1057\u20131071 (2020). https:\/\/doi.org\/10.1177\/194855061987662","journal-title":"Soc. Psychol. Pers. Sci."},{"key":"6_CR21","doi-asserted-by":"publisher","first-page":"232","DOI":"10.3758\/s13428-020-01433-0","volume":"53","author":"FR Hopp","year":"2021","unstructured":"Hopp, F.R., Fisher, J.T., Cornell, D., Huskey, R., Weber, R.: The extended moral foundations dictionary (eMFD): development and applications of a crowd-sourced approach to extracting moral intuitions from text. Behav. Res. Methods 53, 232\u2013246 (2021). https:\/\/doi.org\/10.3758\/s13428-020-01433-0","journal-title":"Behav. Res. Methods"},{"key":"6_CR22","doi-asserted-by":"publisher","unstructured":"Ibrahim, M., Louie, M., Modarres, C., Paisley, J.: Global explanations of neural networks: mapping the landscape of predictions. In: Proceedings of the 2019 AAAI\/ACM Conference on AI, Ethics, and Society, pp. 279\u2013287 (2019). https:\/\/doi.org\/10.1145\/3306618.3314230","DOI":"10.1145\/3306618.3314230"},{"key":"6_CR23","doi-asserted-by":"publisher","unstructured":"Jaume, G., et al.: Quantifying explainers of graph neural networks in computational pathology. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19\u201325 June 2021, pp. 8106\u20138116. Computer Vision Foundation\/IEEE (2021). https:\/\/doi.org\/10.1109\/CVPR46437.2021.00801","DOI":"10.1109\/CVPR46437.2021.00801"},{"key":"6_CR24","doi-asserted-by":"publisher","unstructured":"Kiesel, J., Alshomary, M., Handke, N., Cai, X., Wachsmuth, H., Stein, B.: Identifying the human values behind arguments. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (vol. 1: Long Papers), pp. 4459\u20134471 (2022). https:\/\/doi.org\/10.18653\/v1\/2022.acl-long.306","DOI":"10.18653\/v1\/2022.acl-long.306"},{"key":"6_CR25","doi-asserted-by":"publisher","unstructured":"Kindermans, P.J., et al.: The (un)reliability of saliency methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., M\u00fcller, K.R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 267\u2013280. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-28954-6_14","DOI":"10.1007\/978-3-030-28954-6_14"},{"key":"6_CR26","unstructured":"Kokalj, E., \u0160krlj, B., Lavra\u010d, N., Pollak, S., Robnik-\u0160ikonja, M.: BERT meets Shapley: extending SHAP explanations to transformer-based classifiers. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pp. 16\u201321 (2021)"},{"key":"6_CR27","doi-asserted-by":"crossref","unstructured":"Liscio, E., et al.: What does a text classifier learn about morality? An explainable method for cross-domain comparison of moral rhetoric. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, pp. 1\u201312, Toronto (2023, to appear)","DOI":"10.18653\/v1\/2023.acl-long.789"},{"key":"6_CR28","doi-asserted-by":"publisher","unstructured":"Liscio, E., Dondera, A., Geadau, A., Jonker, C., Murukannaiah, P.: Cross-domain classification of moral values. In: Findings of the Association for Computational Linguistics: NAACL 2022, pp. 2727\u20132745. Association for Computational Linguistics, Seattle, United States, July 2022. https:\/\/doi.org\/10.18653\/v1\/2022.findings-naacl.209","DOI":"10.18653\/v1\/2022.findings-naacl.209"},{"issue":"9","key":"6_CR29","doi-asserted-by":"publisher","first-page":"3786","DOI":"10.1109\/TNNLS.2021.3099165","volume":"32","author":"G Liu","year":"2021","unstructured":"Liu, G., et al.: Medical-VLBERT: medical visual language BERT for COVID-19 CT report generation with alternate learning. IEEE Trans. Neural Netw. Learn. Syst. 32(9), 3786\u20133797 (2021). https:\/\/doi.org\/10.1109\/TNNLS.2021.3099165","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"3","key":"6_CR30","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1111\/insr.12016","volume":"82","author":"WY Loh","year":"2014","unstructured":"Loh, W.Y.: Fifty years of classification and regression trees. Int. Stat. Rev. 82(3), 329\u2013348 (2014). https:\/\/doi.org\/10.1111\/insr.12016","journal-title":"Int. Stat. Rev."},{"key":"6_CR31","unstructured":"Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017). https:\/\/proceedings.neurips.cc\/paper_files\/paper\/2017\/file\/8a20a8621978632d76c43dfd28b67767-Paper.pdf"},{"key":"6_CR32","unstructured":"Luo, S., Ivison, H., Han, C., Poon, J.: Local interpretations for explainable natural language processing: a survey. arXiv preprint arXiv:2103.11072 (2021)"},{"issue":"8","key":"6_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3546577","volume":"55","author":"A Madsen","year":"2022","unstructured":"Madsen, A., Reddy, S., Chandar, S.: Post-hoc interpretability for neural NLP: a survey. ACM Comput. Surv. 55(8), 1\u201342 (2022). https:\/\/doi.org\/10.1145\/3546577","journal-title":"ACM Comput. Surv."},{"issue":"2","key":"6_CR34","doi-asserted-by":"publisher","first-page":"604","DOI":"10.1109\/TNNLS.2020.2979670","volume":"32","author":"DW Otter","year":"2021","unstructured":"Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 604\u2013624 (2021). https:\/\/doi.org\/10.1109\/TNNLS.2020.2979670","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"6_CR35","unstructured":"Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485\u20135551 (2020). https:\/\/dl.acm.org\/doi\/abs\/10.5555\/3455716.3455856"},{"key":"6_CR36","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/j.procs.2020.01.083","volume":"165","author":"D Ramachandran","year":"2019","unstructured":"Ramachandran, D., Parvathi, R.: Analysis of Twitter specific preprocessing technique for tweets. Procedia Comput. Sci. 165, 245\u2013251 (2019). https:\/\/doi.org\/10.1016\/j.procs.2020.01.083","journal-title":"Procedia Comput. Sci."},{"key":"6_CR37","doi-asserted-by":"publisher","unstructured":"Ribeiro, M.T., Singh, S., Guestrin, C.: \u201cWhy should I trust you?\u201d: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135\u20131144 (2016). https:\/\/doi.org\/10.18653\/v1\/N16-3020","DOI":"10.18653\/v1\/N16-3020"},{"issue":"3","key":"6_CR38","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1109\/JPROC.2021.3060483","volume":"109","author":"W Samek","year":"2021","unstructured":"Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., M\u00fcller, K.R.: Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109(3), 247\u2013278 (2021). https:\/\/doi.org\/10.1109\/JPROC.2021.3060483","journal-title":"Proc. IEEE"},{"issue":"2","key":"6_CR39","doi-asserted-by":"publisher","first-page":"e12239","DOI":"10.2196\/12239","volume":"7","author":"S Sheikhalishahi","year":"2019","unstructured":"Sheikhalishahi, S., et al.: Natural language processing of clinical notes on chronic diseases: systematic review. JMIR Med. Inform. 7(2), e12239 (2019). https:\/\/doi.org\/10.2196\/12239","journal-title":"JMIR Med. Inform."},{"key":"6_CR40","doi-asserted-by":"publisher","first-page":"343","DOI":"10.1613\/jair.1.12007","volume":"69","author":"F Stahlberg","year":"2020","unstructured":"Stahlberg, F.: Neural machine translation: a review. J. Artif. Intell. Res. 69, 343\u2013418 (2020). https:\/\/doi.org\/10.1613\/jair.1.12007","journal-title":"J. Artif. Intell. Res."},{"key":"6_CR41","unstructured":"Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Precup, D., Teh, Y.W. (eds.) International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 3319\u20133328. PMLR, August 2017. https:\/\/proceedings.mlr.press\/v70\/sundararajan17a.html"},{"key":"6_CR42","unstructured":"Tay, Y., Bahri, D., Metzler, D., Juan, D.C., Zhao, Z., Zheng, C.: Synthesizer: rethinking self-attention for transformer models. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 10183\u201310192. PMLR, July 2021. https:\/\/proceedings.mlr.press\/v139\/tay21a.html"},{"key":"6_CR43","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1162\/tacl\\_a_00290","volume":"7","author":"A Warstadt","year":"2019","unstructured":"Warstadt, A., Singh, A., Bowman, S.R.: Neural network acceptability judgments. Trans. Assoc. Comput. Linguist. 7, 625\u2013641 (2019). https:\/\/doi.org\/10.1162\/tacl_a_00290","journal-title":"Trans. Assoc. Comput. Linguist."},{"key":"6_CR44","doi-asserted-by":"publisher","unstructured":"Wu, Z., Nguyen, T.S., Ong, D.C.: Structured self-attention weights encode semantics in sentiment analysis. In: Proceedings of the Third Blackbox NLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 255\u2013264. Association for Computational Linguistics (2020). https:\/\/doi.org\/10.18653\/v1\/2020.blackboxnlp-1.24","DOI":"10.18653\/v1\/2020.blackboxnlp-1.24"},{"key":"6_CR45","doi-asserted-by":"publisher","unstructured":"Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 8(4) (2018). https:\/\/doi.org\/10.1002\/widm.1253","DOI":"10.1002\/widm.1253"},{"key":"6_CR46","unstructured":"Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https:\/\/proceedings.neurips.cc\/paper_files\/paper\/2018\/file\/f2925f97bc13ad2852a7a551802feea0-Paper.pdf"},{"issue":"5","key":"6_CR47","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3529755","volume":"55","author":"JE Zini","year":"2022","unstructured":"Zini, J.E., Awad, M.: On the explainability of natural language processing deep models. ACM Comput. Surv. 55(5), 1\u201331 (2022). https:\/\/doi.org\/10.1145\/3529755","journal-title":"ACM Comput. Surv."}],"container-title":["Lecture Notes in Computer Science","Explainable and Transparent AI and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-40878-6_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T13:03:53Z","timestamp":1693832633000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-40878-6_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031408779","9783031408786"],"references-count":47,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-40878-6_6","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 September 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EXTRAAMAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"London","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 May 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 May 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"extraamas2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/extraamas.ehealth.hevs.ch\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"15","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"58% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Between 3 and 5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"~1\/2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}