{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T09:11:58Z","timestamp":1743066718034,"version":"3.40.3"},"publisher-location":"Cham","reference-count":21,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031407246"},{"type":"electronic","value":"9783031407253"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-40725-3_46","type":"book-chapter","created":{"date-parts":[[2023,8,28]],"date-time":"2023-08-28T23:02:46Z","timestamp":1693263766000},"page":"545-553","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Comparative Analysis of\u00a0Intelligent Techniques for\u00a0Categorization of\u00a0the\u00a0Operational Status of\u00a0LiFePo4 Batteries"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0009-0003-6771-5211","authenticated-orcid":false,"given":"Antonio","family":"D\u00edaz-Longueira","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0134-5660","authenticated-orcid":false,"given":"\u00c1lvaro","family":"Michelena","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0982-6346","authenticated-orcid":false,"given":"M\u00edriam","family":"Timiraos","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0994-1961","authenticated-orcid":false,"given":"Francisco","family":"Zayas-Gato","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0268-7999","authenticated-orcid":false,"given":"H\u00e9ctor","family":"Quinti\u00e1n","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6514-6858","authenticated-orcid":false,"given":"Carmen Benavides","family":"Cuellar","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6572-1261","authenticated-orcid":false,"given":"H\u00e9ctor","family":"Alaiz-Moret\u00f3n","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2333-8405","authenticated-orcid":false,"given":"Jos\u00e9 Luis","family":"Calvo-Rolle","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3796-3949","authenticated-orcid":false,"given":"Mar\u00eda Teresa","family":"Garc\u00eda-Ord\u00e1s","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,29]]},"reference":[{"key":"46_CR1","doi-asserted-by":"crossref","unstructured":"Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Classification and Regression Trees, pp. 1\u2013358 (2017). https:\/\/www.taylorfrancis.com\/books\/mono\/10.1201\/9781315139470\/classification-regression-trees-leo-breiman","DOI":"10.1201\/9781315139470-1"},{"key":"46_CR2","doi-asserted-by":"crossref","unstructured":"Cestnik, B.: Estimating probabilities: a crucial task in machine learning (1990)","DOI":"10.1007\/BFb0017010"},{"key":"46_CR3","unstructured":"Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 13\u201317-Aug, pp. 785\u2013794 (2016). https:\/\/arxiv.org\/abs\/1603.02754v3"},{"key":"46_CR4","unstructured":"Commission, E.: European green deal (2023). https:\/\/commission.europa.eu\/strategy-and-policy\/priorities-2019-2024\/european-green-deal\/delivering-european-green-deal_en . Accessed 28 Apr 2023"},{"key":"46_CR5","doi-asserted-by":"crossref","unstructured":"Coppez, G., Chowdhury, S., Chowdhury, S.: The importance of energy storage in renewable power generation: a review. In: 45th International Universities Power Engineering Conference UPEC2010, pp. 1\u20135. IEEE (2010)","DOI":"10.1109\/POWERCON.2010.5666075"},{"issue":"1","key":"46_CR6","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1006\/jcss.1997.1504","volume":"55","author":"Y Freund","year":"1997","unstructured":"Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119\u2013139 (1997)","journal-title":"J. Comput. Syst. Sci."},{"issue":"4","key":"46_CR7","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1093\/jigpal\/jzz057","volume":"28","author":"E Jove","year":"2020","unstructured":"Jove, E., Casteleiro-Roca, J.L., Quinti\u00e1n, H., Simi\u0107, D., M\u00e9ndez-P\u00e9rez, J.A., Luis Calvo-Rolle, J.: Anomaly detection based on one-class intelligent techniques over a control level plant. Logic J. IGPL 28(4), 502\u2013518 (2020)","journal-title":"Logic J. IGPL"},{"issue":"4","key":"46_CR8","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1093\/jigpal\/jzab011","volume":"30","author":"E Jove","year":"2022","unstructured":"Jove, E., Casteleiro-Roca, J.L., Quinti\u00e1n, H., Zayas-Gato, F., Vercelli, G., Calvo-Rolle, J.L.: A one-class classifier based on a hybrid topology to detect faults in power cells. Logic J. IGPL 30(4), 679\u2013694 (2022)","journal-title":"Logic J. IGPL"},{"key":"46_CR9","doi-asserted-by":"publisher","first-page":"1044","DOI":"10.1016\/j.rser.2015.12.046","volume":"56","author":"GL Kyriakopoulos","year":"2016","unstructured":"Kyriakopoulos, G.L., Arabatzis, G.: Electrical energy storage systems in electricity generation: energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 56, 1044\u20131067 (2016)","journal-title":"Renew. Sustain. Energy Rev."},{"key":"46_CR10","unstructured":"LiFeBATT: LiFeBATT x\u20131p 8ah 38123 cell. http:\/\/www.solarvan.co.uk\/Life\/LiFeBATT8Ah.pdf"},{"key":"46_CR11","doi-asserted-by":"crossref","unstructured":"Mach\u00f3n-Gonz\u00e1lez, I., L\u00f3pez-Garc\u00eda, H., Calvo-Rolle, J.L.: A hybrid batch SOM-NG algorithm. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20135. IEEE (2010)","DOI":"10.1109\/IJCNN.2010.5596812"},{"key":"46_CR12","doi-asserted-by":"crossref","unstructured":"Michelena, A., Zayas-Gato, F., Jove, E., Fontenla-Romero, O., Calvo-Rolle, J.L.: Comparative study of anomaly detection techniques for monitoring lithium iron phosphate-lifepo4 batteries. In: Proceedings of V XoveTIC Conference. XoveTIC, vol. 14, pp. 80\u201382 (2023)","DOI":"10.29007\/qd3p"},{"key":"46_CR13","doi-asserted-by":"crossref","unstructured":"Michelena, Aveleira-Mata, J., et al.: A novel intelligent approach for man-in-the-middle attacks detection over internet of things environments based on message queuing telemetry transport. Expert Systems (2023). https:\/\/onlinelibrary.wiley.com\/doi\/10.1111\/exsy.13263","DOI":"10.1111\/exsy.13263"},{"key":"46_CR14","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1007\/978-3-030-86271-8_32","volume-title":"Hybrid Artificial Intelligent Systems","author":"MTG Ord\u00e1s","year":"2021","unstructured":"Ord\u00e1s, M.T.G., et al.: Hybrid model to calculate the state of charge of a battery. In: Sanjurjo Gonz\u00e1lez, H., Pastor L\u00f3pez, I., Garc\u00eda Bringas, P., Quinti\u00e1n, H., Corchado, E. (eds.) HAIS 2021. LNCS (LNAI), vol. 12886, pp. 379\u2013390. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86271-8_32"},{"issue":"11","key":"46_CR15","doi-asserted-by":"publisher","first-page":"3001","DOI":"10.1016\/j.enconman.2007.07.014","volume":"48","author":"V Paladini","year":"2007","unstructured":"Paladini, V., Donateo, T., De Risi, A., Laforgia, D.: Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development. Energy Convers. Manage. 48(11), 3001\u20133008 (2007)","journal-title":"Energy Convers. Manage."},{"issue":"6","key":"46_CR16","doi-asserted-by":"publisher","first-page":"1056","DOI":"10.1093\/jigpal\/jzac013","volume":"30","author":"H Quinti\u00e1n","year":"2022","unstructured":"Quinti\u00e1n, H., et al.: Advanced visualization of intrusions in flows by means of beta-Hebbian learning. Logic J. IGPL 30(6), 1056\u20131073 (2022)","journal-title":"Logic J. IGPL"},{"issue":"2","key":"46_CR17","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1002\/er.3598","volume":"41","author":"L Ungurean","year":"2017","unstructured":"Ungurean, L., C\u00e2rstoiu, G., Micea, M.V., Groza, V.: Battery state of health estimation: a structured review of models, methods and commercial devices. Int. J. Energy Res. 41(2), 151\u2013181 (2017)","journal-title":"Int. J. Energy Res."},{"key":"46_CR18","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1016\/j.jpowsour.2018.10.019","volume":"405","author":"R Xiong","year":"2018","unstructured":"Xiong, R., Li, L., Tian, J.: Towards a smarter battery management system: a critical review on battery state of health monitoring methods. J. Power Sources 405, 18\u201329 (2018)","journal-title":"J. Power Sources"},{"key":"46_CR19","doi-asserted-by":"publisher","first-page":"785","DOI":"10.1093\/jigpal\/jzac040","volume":"31","author":"F Zayas-Gato","year":"2022","unstructured":"Zayas-Gato, F., et al.: Intelligent model for active power prediction of a small wind turbine. Logic J. IGPL 31, 785\u2013803 (2022)","journal-title":"Logic J. IGPL"},{"issue":"23","key":"46_CR20","doi-asserted-by":"publisher","first-page":"20463","DOI":"10.1007\/s00521-022-07106-7","volume":"34","author":"F Zayas-Gato","year":"2022","unstructured":"Zayas-Gato, F., et al.: A distributed topology for identifying anomalies in an industrial environment. Neural Comput. Appl. 34(23), 20463\u201320476 (2022). https:\/\/doi.org\/10.1007\/s00521-022-07106-7","journal-title":"Neural Comput. Appl."},{"issue":"2","key":"46_CR21","doi-asserted-by":"publisher","first-page":"390","DOI":"10.1093\/jigpal\/jzac026","volume":"31","author":"F Zayas-Gato","year":"2022","unstructured":"Zayas-Gato, F., et al.: A novel method for anomaly detection using beta Hebbian learning and principal component analysis. Logic J. IGPL 31(2), 390\u2013399 (2022)","journal-title":"Logic J. IGPL"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-40725-3_46","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,27]],"date-time":"2024-10-27T00:02:19Z","timestamp":1729987339000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-40725-3_46"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031407246","9783031407253"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-40725-3_46","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"29 August 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Salamanca","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2023.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"120","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"65","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"54% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}