{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:49:56Z","timestamp":1742914196648,"version":"3.40.3"},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031401763"},{"type":"electronic","value":"9783031401770"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-40177-0_7","type":"book-chapter","created":{"date-parts":[[2023,7,29]],"date-time":"2023-07-29T06:02:20Z","timestamp":1690610540000},"page":"102-117","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Contextual Information-Augmented Probabilistic Case-Based Reasoning Model for\u00a0Knowledge Graph Reasoning"],"prefix":"10.1007","author":[{"given":"Yuejia","family":"Wu","sequence":"first","affiliation":[]},{"given":"Jian-tao","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,30]]},"reference":[{"key":"7_CR1","doi-asserted-by":"crossref","unstructured":"Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E., Mitchell, T.: Toward an architecture for never-ending language learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 24, no. 1, pp. 1306\u20131313, July 2010","DOI":"10.1609\/aaai.v24i1.7519"},{"key":"7_CR2","doi-asserted-by":"crossref","unstructured":"Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247\u20131250, June 2008","DOI":"10.1145\/1376616.1376746"},{"issue":"11","key":"7_CR3","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1145\/219717.219748","volume":"38","author":"GA Miller","year":"1995","unstructured":"Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39\u201341 (1995)","journal-title":"Commun. ACM"},{"key":"7_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2023.119973","volume":"224","author":"S Behmanesh","year":"2023","unstructured":"Behmanesh, S., Talebpour, A., Shamsfard, M., Jafari, M.M.: Improved relation span detection in question answering systems over extracted knowledge bases. Expert Syst. Appl. 224, 119973 (2023)","journal-title":"Expert Syst. Appl."},{"key":"7_CR5","doi-asserted-by":"crossref","unstructured":"Lin, R., Tang, F., He, C., Wu, Z., Yuan, C., Tang, Y.: DIRS-KG: a KG-enhanced interactive recommender system based on deep reinforcement learning. World Wide Web, pp. 1\u201323 (2023)","DOI":"10.1007\/s11280-022-01135-x"},{"key":"7_CR6","doi-asserted-by":"crossref","unstructured":"Tailhardat, L., Chabot, Y., Troncy, R.: Designing NORIA: a knowledge graph-based platform for anomaly detection and incident management in ICT systems (2023)","DOI":"10.1007\/978-3-031-60635-9_2"},{"key":"7_CR7","unstructured":"Dubitzky, W., B\u00fcchner, A.G., Azuaje, F.J.: Viewing knowledge management as a case-based reasoning application. In: AAAI Workshop Technical Report WS-99-10, pp. 23\u201327 (1999)"},{"key":"7_CR8","unstructured":"Bartlmae, K., Riemenschneider, M.: Case based reasoning for knowledge management in KDD projects. In: PAKM, October 2000"},{"key":"7_CR9","unstructured":"Das, R., Godbole, A., Dhuliawala, S., Zaheer, M., McCallum, A.: A simple approach to case-based reasoning in knowledge bases (2020). arXiv preprint arXiv:2006.14198"},{"key":"7_CR10","doi-asserted-by":"crossref","unstructured":"Das, R., Godbole, A., Monath, N., Zaheer, M., McCallum, A.: Probabilistic case-based reasoning for open-world knowledge graph completion (2020). arXiv preprint arXiv:2010.03548","DOI":"10.18653\/v1\/2020.findings-emnlp.427"},{"key":"7_CR11","unstructured":"Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs (2020). arXiv preprint arXiv:2012.09699"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Pujara, J., Augustine, E., Getoor, L.: Sparsity and noise: where knowledge graph embeddings fall short. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1751\u20131756, September 2017","DOI":"10.18653\/v1\/D17-1184"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Xiong, W., Hoang, T., Wang, W.Y.: Deeppath: a reinforcement learning method for knowledge graph reasoning (2017). arXiv preprint arXiv:1707.06690","DOI":"10.18653\/v1\/D17-1060"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 192\u2013202, November 2016","DOI":"10.18653\/v1\/D16-1019"},{"key":"7_CR15","doi-asserted-by":"crossref","unstructured":"Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, April 2018","DOI":"10.1609\/aaai.v32i1.11573"},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"Minervini, P., Demeester, T., Rockt\u00e4schel, T., Riedel, S.: Adversarial sets for regularising neural link predictors (2017). arXiv preprint arXiv:1707.07596","DOI":"10.18653\/v1\/K18-1007"},{"key":"7_CR17","unstructured":"Garc\u00eda-Dur\u00e1n, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base representations with latent, relational, and numerical features (2017). arXiv preprint arXiv:1709.04676"},{"key":"7_CR18","unstructured":"Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 26 (2013)"},{"key":"7_CR19","unstructured":"Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)"},{"key":"7_CR20","unstructured":"Trouillon, T., Welbl, J., Riedel, S., Gaussier, \u00c9., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071\u20132080. PMLR, June 2016"},{"key":"7_CR21","unstructured":"Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space (2019). arXiv preprint arXiv:1902.10197"},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Minervini, P., Bo\u0161njak, M., Rockt\u00e4schel, T., Riedel, S., Grefenstette, E.: Differentiable reasoning on large knowledge bases and natural language. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 5182\u20135190, April 2020","DOI":"10.1609\/aaai.v34i04.5962"},{"key":"7_CR23","unstructured":"Das, R., et al.: Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning (2017). arXiv preprint arXiv:1711.05851"}],"container-title":["Lecture Notes in Computer Science","Case-Based Reasoning Research and Development"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-40177-0_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T08:25:15Z","timestamp":1729844715000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-40177-0_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031401763","9783031401770"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-40177-0_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"30 July 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCBR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Case-Based Reasoning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Aberdeen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccbr2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.comp.rgu.ac.uk\/ICCBR23\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"72","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.7","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4.7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}