{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:35:45Z","timestamp":1726227345710},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031399640"},{"type":"electronic","value":"9783031399657"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-39965-7_58","type":"book-chapter","created":{"date-parts":[[2023,8,20]],"date-time":"2023-08-20T16:01:37Z","timestamp":1692547297000},"page":"701-712","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improved DE-MC Algorithm with\u00a0Automated Outliers Detection"],"prefix":"10.1007","author":[{"given":"Kamila M.","family":"Rychlik","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9649-396X","authenticated-orcid":false,"given":"Maciej","family":"Romaniuk","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,21]]},"reference":[{"key":"58_CR1","unstructured":"Aho, K.: asbio: a collection of statistical tools for biologists (2022). https:\/\/CRAN.R-project.org\/package=asbio"},{"issue":"4","key":"58_CR2","doi-asserted-by":"publisher","first-page":"435","DOI":"10.1007\/s11222-008-9104-9","volume":"18","author":"CJF ter Braak","year":"2008","unstructured":"ter Braak, C.J.F., Vrugt, J.A.: Differential evolution Markov chain with snooker updater and fewer chains. Stat. Comput. 18(4), 435\u2013446 (2008). https:\/\/doi.org\/10.1007\/s11222-008-9104-9","journal-title":"Stat. Comput."},{"issue":"3","key":"58_CR3","doi-asserted-by":"publisher","first-page":"239","DOI":"10.1007\/s11222-006-8769-1","volume":"16","author":"CJFT Braak","year":"2006","unstructured":"Braak, C.J.F.T.: A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16(3), 239\u2013249 (2006). https:\/\/doi.org\/10.1007\/s11222-006-8769-1","journal-title":"Stat. Comput."},{"issue":"2","key":"58_CR4","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1145\/335191.335388","volume":"29","author":"M Breunig","year":"2000","unstructured":"Breunig, M., Kriegel, H.P., Ng, R., Sander, J.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93\u2013104 (2000)","journal-title":"ACM SIGMOD Rec."},{"key":"58_CR5","doi-asserted-by":"publisher","unstructured":"Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.: Bayesian Data Analysis. Chapman and Hall\/CRC (2013). https:\/\/doi.org\/10.1201\/b16018","DOI":"10.1201\/b16018"},{"issue":"1","key":"58_CR6","doi-asserted-by":"publisher","first-page":"1650","DOI":"10.2991\/ijcis.d.201012.003","volume":"13","author":"P Grzegorzewski","year":"2020","unstructured":"Grzegorzewski, P., Hryniewicz, O., Romaniuk, M.: Flexible bootstrap for fuzzy data based on the canonical representation. Int. J. Comput. Intell. Syst. 13(1), 1650\u20131662 (2020). https:\/\/doi.org\/10.2991\/ijcis.d.201012.003","journal-title":"Int. J. Comput. Intell. Syst."},{"issue":"2","key":"58_CR7","doi-asserted-by":"publisher","first-page":"285","DOI":"10.34768\/amcs-2022-0021","volume":"32","author":"P Grzegorzewski","year":"2022","unstructured":"Grzegorzewski, P., Romaniuk, M.: Bootstrap methods for epistemic fuzzy data. Int. J. Appl. Math. Comput. Sci. 32(2), 285\u2013297 (2022). https:\/\/doi.org\/10.34768\/amcs-2022-0021","journal-title":"Int. J. Appl. Math. Comput. Sci."},{"key":"58_CR8","series-title":"Lecture Notes in Networks and Systems","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1007\/978-3-030-95929-6_3","volume-title":"Uncertainty and Imprecision in Decision Making and Decision Support: New Advances, Challenges, and Perspectives","author":"P Grzegorzewski","year":"2022","unstructured":"Grzegorzewski, P., Romaniuk, M.: Bootstrap methods for fuzzy data. In: Atanassov, K.T., et al. (eds.) IWIFSGN BOS\/SOR 2020. LNNS, vol. 338, pp. 28\u201347. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-95929-6_3"},{"key":"58_CR9","doi-asserted-by":"publisher","unstructured":"Liu, F., Ting, K., Zhou, Z.H.: Isolation forest. In: Giannotti, F., Gunopulos, D., Turini, F., Zaniolo, C., Ramakrishnan, N., Wu, X. (eds.) Proceedings of the Eighth IEEE International Conference on Data Mining, pp. 413\u2013422. IEEE (2008). https:\/\/doi.org\/10.1109\/ICDM.2008.17","DOI":"10.1109\/ICDM.2008.17"},{"key":"58_CR10","unstructured":"Madsen, J.H.: DDoutlier: distance & density-based outlier detection (2018). https:\/\/CRAN.R-project.org\/package=DDoutlier"},{"key":"58_CR11","unstructured":"Mersmann, O.: Microbenchmark: accurate timing functions (2021). https:\/\/CRAN.R-project.org\/package=microbenchmark"},{"key":"58_CR12","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.swevo.2017.12.007","volume":"39","author":"K Opara","year":"2018","unstructured":"Opara, K., Arabas, J.: Comparison of mutation strategies in differential evolution - a probabilistic perspective. Swarm Evol. Comput. 39, 53\u201369 (2018). https:\/\/doi.org\/10.1016\/j.swevo.2017.12.007","journal-title":"Swarm Evol. Comput."},{"key":"58_CR13","doi-asserted-by":"publisher","first-page":"546","DOI":"10.1016\/j.swevo.2018.06.010","volume":"44","author":"KR Opara","year":"2019","unstructured":"Opara, K.R., Arabas, J.: Differential evolution: a survey of theoretical analyses. Swarm Evol. Comput. 44, 546\u2013558 (2019). https:\/\/doi.org\/10.1016\/j.swevo.2018.06.010","journal-title":"Swarm Evol. Comput."},{"issue":"5","key":"58_CR14","doi-asserted-by":"publisher","first-page":"977","DOI":"10.1007\/s00778-021-00721-1","volume":"31","author":"E Panjei","year":"2022","unstructured":"Panjei, E., Gruenwald, L., Leal, E., Nguyen, C., Silvia, S.: A survey on outlier explanations. VLDB J. 31(5), 977\u20131008 (2022). https:\/\/doi.org\/10.1007\/s00778-021-00721-1","journal-title":"VLDB J."},{"key":"58_CR15","unstructured":"Plummer, M., Best, N., Cowles, K., Vines, K.: CODA: convergence diagnosis and output analysis for MCMC. R News 6(1), 7\u201311 (2006). https:\/\/journal.r-project.org\/archive\/"},{"key":"58_CR16","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4757-4145-2","volume-title":"Monte Carlo Statistical Methods","author":"CP Robert","year":"2005","unstructured":"Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/978-1-4757-4145-2"},{"key":"58_CR17","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1007\/978-3-319-46592-0_3","volume":"524","author":"M Romaniuk","year":"2017","unstructured":"Romaniuk, M.: Analysis of the insurance portfolio with an embedded catastrophe bond in a case of uncertain parameter of the insurer\u2019s share. Adv. Intell. Syst. Comput. 524, 33\u201343 (2017). https:\/\/doi.org\/10.1007\/978-3-319-46592-0_3","journal-title":"Adv. Intell. Syst. Comput."},{"key":"58_CR18","series-title":"Springer Proceedings in Mathematics & Statistics","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1007\/978-3-030-28665-1_33","volume-title":"Stochastic Models, Statistics and Their Applications","author":"M Romaniuk","year":"2019","unstructured":"Romaniuk, M.: On some applications of simulations in estimation of maintenance costs and in statistical tests for fuzzy settings. In: Steland, A., Rafaj\u0142owicz, E., Okhrin, O. (eds.) SMSA 2019. SPMS, vol. 294, pp. 437\u2013448. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-28665-1_33"},{"issue":"3","key":"58_CR19","doi-asserted-by":"publisher","first-page":"599","DOI":"10.1109\/TFUZZ.2019.2957253","volume":"29","author":"M Romaniuk","year":"2021","unstructured":"Romaniuk, M., Hryniewicz, O.: Discrete and smoothed resampling methods for interval-valued fuzzy numbers. IEEE Trans. Fuzzy Syst. 29(3), 599\u2013611 (2021). https:\/\/doi.org\/10.1109\/TFUZZ.2019.2957253","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"58_CR20","unstructured":"Srikanth, K.S.: solitude: an implementation of isolation forest (2021). https:\/\/CRAN.R-project.org\/package=solitude"},{"key":"58_CR21","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"535","DOI":"10.1007\/3-540-47887-6_53","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"J Tang","year":"2002","unstructured":"Tang, J., Chen, Z., Fu, A.W., Cheung, D.W.: Enhancing effectiveness of outlier detections for low density patterns. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 535\u2013548. Springer, Heidelberg (2002). https:\/\/doi.org\/10.1007\/3-540-47887-6_53"},{"key":"58_CR22","doi-asserted-by":"publisher","unstructured":"Vats, D., Knudson, C.: Revisiting the Gelman-Rubin diagnostic (2018). https:\/\/doi.org\/10.48550\/ARXIV.1812.09384, https:\/\/arxiv.org\/abs\/1812.09384","DOI":"10.48550\/ARXIV.1812.09384"},{"issue":"12","key":"58_CR23","doi-asserted-by":"publisher","first-page":"3701","DOI":"10.5194\/hess-15-3701-2011","volume":"15","author":"JA Vrugt","year":"2011","unstructured":"Vrugt, J.A., ter Braak, C.F.: DREAM(D): an adaptive Markov Chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems. Hydrol. Earth Syst. Sci. 15(12), 3701\u20133713 (2011). https:\/\/doi.org\/10.5194\/hess-15-3701-2011","journal-title":"Hydrol. Earth Syst. Sci."},{"issue":"3","key":"58_CR24","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1515\/IJNSNS.2009.10.3.273","volume":"10","author":"JA Vrugt","year":"2009","unstructured":"Vrugt, J.A., ter Braak, C., Diks, C., Robinson, B.A., Hyman, J.M., Higdon, D.: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 10(3), 273\u2013290 (2009). https:\/\/doi.org\/10.1515\/IJNSNS.2009.10.3.273","journal-title":"Int. J. Nonlinear Sci. Numer. Simul."}],"container-title":["Lecture Notes in Computer Science","Fuzzy Logic and Technology, and Aggregation Operators"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-39965-7_58","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,8,20]],"date-time":"2023-08-20T16:06:23Z","timestamp":1692547583000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-39965-7_58"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031399640","9783031399657"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-39965-7_58","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"21 August 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EUSFLAT","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Conference of the European Society for Fuzzy Logic and Technology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Palma de Mallorca","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eusflat2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.eusflat2023.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"161","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"71","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}