{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:24:27Z","timestamp":1742912667686,"version":"3.40.3"},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031398209"},{"type":"electronic","value":"9783031398216"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-39821-6_33","type":"book-chapter","created":{"date-parts":[[2023,8,15]],"date-time":"2023-08-15T21:01:25Z","timestamp":1692133285000},"page":"408-422","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Integrally Private Model Selection for\u00a0Deep Neural Networks"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8073-6784","authenticated-orcid":false,"given":"Ayush K.","family":"Varshney","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0368-8037","authenticated-orcid":false,"given":"Vicen\u00e7","family":"Torra","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,16]]},"reference":[{"issue":"13","key":"33_CR1","doi-asserted-by":"publisher","first-page":"1216","DOI":"10.1056\/NEJMp1606181","volume":"375","author":"Z Obermeyer","year":"2016","unstructured":"Obermeyer, Z., Emanuel, E.J.: Predicting the future-big data, machine learning, and clinical medicine. New Engl. J. Med. 375(13), 1216 (2016)","journal-title":"New Engl. J. Med."},{"issue":"6","key":"33_CR2","doi-asserted-by":"publisher","first-page":"1010","DOI":"10.1109\/69.971193","volume":"13","author":"P Samarati","year":"2001","unstructured":"Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010\u20131027 (2001)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"33_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/11787006_1","volume-title":"Automata, Languages and Programming","author":"C Dwork","year":"2006","unstructured":"Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1\u201312. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11787006_1"},{"key":"33_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"661","DOI":"10.1007\/978-3-319-48965-0_44","volume-title":"Cryptology and Network Security","author":"V Torra","year":"2016","unstructured":"Torra, V., Navarro-Arribas, G.: Integral privacy. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 661\u2013669. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48965-0_44"},{"key":"33_CR5","unstructured":"Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey and review. arXiv preprint arXiv:1412.7584 (2014)"},{"key":"33_CR6","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1016\/j.cose.2019.01.006","volume":"83","author":"N Senavirathne","year":"2019","unstructured":"Senavirathne, N., Torra, V.: Integrally private model selection for decision trees. Comput. Secur. 83, 167\u2013181 (2019)","journal-title":"Comput. Secur."},{"key":"33_CR7","doi-asserted-by":"crossref","unstructured":"Senavirathne, N., Torra, V.: Approximating robust linear regression with an integral privacy guarantee. In: 2018 16th Annual Conference on Privacy, Security and Trust (PST), pp. 1\u201310. IEEE (2018)","DOI":"10.1109\/PST.2018.8514161"},{"key":"33_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1007\/978-3-030-57521-2_5","volume-title":"Privacy in Statistical Databases","author":"V Torra","year":"2020","unstructured":"Torra, V., Navarro-Arribas, G., Galv\u00e1n, E.: Explaining recurrent machine learning models: integral privacy revisited. In: Domingo-Ferrer, J., Muralidhar, K. (eds.) PSD 2020. LNCS, vol. 12276, pp. 62\u201373. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-57521-2_5"},{"key":"33_CR9","doi-asserted-by":"publisher","first-page":"58","DOI":"10.1016\/j.inffus.2018.09.011","volume":"51","author":"V Torra","year":"2019","unstructured":"Torra, V., Senavirathne, N.: Maximal C consensus meets. Inf. Fusion 51, 58\u201366 (2019)","journal-title":"Inf. Fusion"},{"key":"33_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"33_CR11","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)"},{"issue":"2","key":"33_CR12","doi-asserted-by":"publisher","first-page":"352","DOI":"10.1109\/TPAMI.2017.2670560","volume":"40","author":"Y-G Jiang","year":"2017","unstructured":"Jiang, Y.-G., Zuxuan, W., Wang, J., Xue, X., Chang, S.-F.: Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 352\u2013364 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"33_CR13","doi-asserted-by":"crossref","unstructured":"Oh, C., Xompero, A., Cavallaro, A.: Visual adversarial attacks and defenses. In: Advanced Methods and Deep Learning in Computer Vision, pp. 511\u2013543. Elsevier (2022)","DOI":"10.1016\/B978-0-12-822109-9.00024-2"},{"key":"33_CR14","unstructured":"Ng, A.: MLOps: from model-centric to data-centric AI (2021). https:\/\/www.deeplearning.ai\/wp-content\/uploads\/2021\/06\/MLOps-From-Model-centric-to-Data-centricAI.pdf. Accessed 09 Sept 2021"},{"key":"33_CR15","unstructured":"Motamedi, M., Sakharnykh, N., Kaldewey, T.: A data-centric approach for training deep neural networks with less data. arXiv preprint arXiv:2110.03613 (2021)"},{"key":"33_CR16","unstructured":"Dua, D., Graff, C.: UCI machine learning repository (2017). http:\/\/archive.ics.uci.edu\/ml"},{"key":"33_CR17","unstructured":"Centers for Disease Control, Prevention, et al.: National diabetes statistics report, 2017. Centers for disease control and prevention, Atlanta, GA (2015, 2017)"},{"key":"33_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1007\/11681878_14","volume-title":"Theory of Cryptography","author":"C Dwork","year":"2006","unstructured":"Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265\u2013284. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11681878_14"},{"key":"33_CR19","unstructured":"Thudi, A., Jia, H., Shumailov, I., Papernot, N.: On the necessity of auditable algorithmic definitions for machine unlearning. In: 31st USENIX Security Symposium (USENIX Security 2022), pp. 4007\u20134022 (2022)"},{"key":"33_CR20","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1007\/978-3-319-21852-6_3","volume-title":"Measures of Complexity","author":"VN Vapnik","year":"2015","unstructured":"Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. In: Vovk, V., Papadopoulos, H., Gammerman, A. (eds.) Measures of Complexity, pp. 11\u201330. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-21852-6_3"},{"key":"33_CR21","volume-title":"High-Dimensional Probability: An Introduction with Applications in Data Science","author":"R Vershynin","year":"2018","unstructured":"Vershynin, R.: High-Dimensional Probability: An Introduction with Applications in Data Science, vol. 47. Cambridge University Press, Cambridge (2018)"},{"key":"33_CR22","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511624216","volume-title":"Neural Network Learning: Theoretical Foundations","author":"M Anthony","year":"1999","unstructured":"Anthony, M., Bartlett, P.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (1999)"},{"issue":"4","key":"33_CR23","doi-asserted-by":"publisher","first-page":"639","DOI":"10.1162\/neco.1995.7.4.639","volume":"7","author":"YS Abu-Mostafa","year":"1995","unstructured":"Abu-Mostafa, Y.S.: Hints. Neural Comput. 7(4), 639\u2013671 (1995)","journal-title":"Neural Comput."},{"key":"33_CR24","doi-asserted-by":"crossref","unstructured":"Baum, E., Haussler, D.: What size net gives valid generalization? In: Advances in Neural Information Processing Systems, vol. 1 (1988)","DOI":"10.1162\/neco.1989.1.1.151"}],"container-title":["Lecture Notes in Computer Science","Database and Expert Systems Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-39821-6_33","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:49:38Z","timestamp":1710269378000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-39821-6_33"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031398209","9783031398216"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-39821-6_33","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"16 August 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DEXA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Database and Expert Systems Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Penang","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malaysia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"34","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dexa2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.dexa.org\/dexa2023","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EquinOCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"155","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"49","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"35","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"For the workshops 7 full and 3 short papers have been accepted from 20 submissions","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}