{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T10:58:44Z","timestamp":1726225124239},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031390586"},{"type":"electronic","value":"9783031390593"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-39059-3_9","type":"book-chapter","created":{"date-parts":[[2023,7,30]],"date-time":"2023-07-30T13:01:37Z","timestamp":1690722097000},"page":"126-142","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Study of\u00a0Neural Collapse for\u00a0Text Classification"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1168-0518","authenticated-orcid":false,"given":"Jia Hui","family":"Feng","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9159-3718","authenticated-orcid":false,"given":"Edmund M.-K.","family":"Lai","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9215-4979","authenticated-orcid":false,"given":"Weihua","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,31]]},"reference":[{"key":"9_CR1","doi-asserted-by":"crossref","unstructured":"Edelsbrunner, H., Harer, J.: Persistent homology - a survey. In: Surveys on Discrete and Computational Geometry, vol. 453, p. 257. American Mathematical Society (2008)","DOI":"10.1090\/conm\/453\/08802"},{"key":"9_CR2","doi-asserted-by":"publisher","unstructured":"Galanti, T., Gy\u00f6rgy, A., Hutter, M.: On the role of neural collapse in transfer learning, January 2022. https:\/\/doi.org\/10.48550\/arXiv.2112.15121. http:\/\/arxiv.org\/abs\/2112.15121. arXiv:2112.15121 [cs]","DOI":"10.48550\/arXiv.2112.15121"},{"key":"9_CR3","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). Google-Books-ID: omivDQAAQBAJ"},{"key":"9_CR4","series-title":"Intelligent Systems Reference Library","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1007\/978-3-642-36657-4_7","volume-title":"Handbook on Neural Information Processing","author":"MFA Hady","year":"2013","unstructured":"Hady, M.F.A., Schwenker, F.: Semi-supervised learning. In: Bianchini, M., Maggini, M., Jain, L.C. (eds.) Handbook on Neural Information Processing. ISRL, vol. 49, pp. 215\u2013239. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-36657-4_7"},{"key":"9_CR5","doi-asserted-by":"publisher","unstructured":"Han, X.Y., Papyan, V., Donoho, D.L.: Neural collapse under MSE loss: proximity to and dynamics on the central path, May 2022. https:\/\/doi.org\/10.48550\/arXiv.2106.02073. http:\/\/arxiv.org\/abs\/2106.02073. arXiv:2106.02073 [cs, math, stat]","DOI":"10.48550\/arXiv.2106.02073"},{"key":"9_CR6","doi-asserted-by":"publisher","unstructured":"He, F., Tao, D.: Recent advances in deep learning theory, March 2021. https:\/\/doi.org\/10.48550\/arXiv.2012.10931. http:\/\/arxiv.org\/abs\/2012.10931. arXiv:2012.10931 [cs, stat]","DOI":"10.48550\/arXiv.2012.10931"},{"key":"9_CR7","unstructured":"Hui, L., Belkin, M., Nakkiran, P.: Limitations of neural collapse for understanding generalization in deep learning, February 2022. http:\/\/arxiv.org\/abs\/2202.08384. arXiv:2202.08384 [cs, stat]"},{"key":"9_CR8","doi-asserted-by":"publisher","unstructured":"Jabbar, H.K., Khan, R.Z.: Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study). In: Computer Science, Communication and Instrumentation Devices, pp. 163\u2013172. Research Publishing Services (2014). https:\/\/doi.org\/10.3850\/978-981-09-5247-1_017. http:\/\/rpsonline.com.sg\/proceedings\/9789810952471\/html\/017.xml","DOI":"10.3850\/978-981-09-5247-1_017"},{"key":"9_CR9","unstructured":"Ji, W., Lu, Y., Zhang, Y., Deng, Z., Su, W.J.: An unconstrained layer-peeled perspective on neural collapse, April 2022. http:\/\/arxiv.org\/abs\/2110.02796. arXiv:2110.02796 [cs, stat]"},{"key":"9_CR10","unstructured":"Kothapalli, V., Rasromani, E., Awatramani, V.: Neural collapse: a review on modelling principles and generalization, June 2022. http:\/\/arxiv.org\/abs\/2206.04041. arXiv:2206.04041 [cs]"},{"key":"9_CR11","unstructured":"Li, X., et al.: Principled and efficient transfer learning of deep models via neural collapse, January 2023. http:\/\/arxiv.org\/abs\/2212.12206. arXiv:2212.12206 [cs, eess, stat]"},{"key":"9_CR12","doi-asserted-by":"publisher","unstructured":"Lu, J., Steinerberger, S.: Neural collapse under cross-entropy loss. Appl. Comput. Harmonic Anal. 59, 224\u2013241 (2022). https:\/\/doi.org\/10.1016\/j.acha.2021.12.011. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1063520321001123","DOI":"10.1016\/j.acha.2021.12.011"},{"key":"9_CR13","unstructured":"Maria, C.: Persistent cohomology user manual - gudhi documentation (2016). https:\/\/gudhi.inria.fr"},{"issue":"3","key":"9_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3439726","volume":"54","author":"S Minaee","year":"2022","unstructured":"Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.: Deep learning-based text classification: a comprehensive review. ACM Comput. Surv. 54(3), 1\u201340 (2022). https:\/\/doi.org\/10.1145\/3439726","journal-title":"ACM Comput. Surv."},{"issue":"2","key":"9_CR15","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1007\/s43670-022-00027-5","volume":"20","author":"DG Mixon","year":"2022","unstructured":"Mixon, D.G., Parshall, H., Pi, J.: Neural collapse with unconstrained features. Sampling Theory Sig. Process. Data Anal. 20(2), 11 (2022). https:\/\/doi.org\/10.1007\/s43670-022-00027-5","journal-title":"Sampling Theory Sig. Process. Data Anal."},{"key":"9_CR16","doi-asserted-by":"publisher","unstructured":"Munch, E.: A user\u2019s guide to topological data analysis. J. Learn. Anal. 4(2), 47\u201361 (2017). https:\/\/doi.org\/10.18608\/jla.2017.42.6. https:\/\/learning-analytics.info\/index.php\/JLA\/article\/view\/5196","DOI":"10.18608\/jla.2017.42.6"},{"issue":"40","key":"9_CR17","doi-asserted-by":"publisher","first-page":"24652","DOI":"10.1073\/pnas.2015509117","volume":"117","author":"V Papyan","year":"2020","unstructured":"Papyan, V., Han, X.Y., Donoho, D.L.: Prevalence of neural collapse during the terminal phase of deep learning training. Proc. Natl. Acad. Sci. 117(40), 24652\u201324663 (2020). https:\/\/doi.org\/10.1073\/pnas.2015509117","journal-title":"Proc. Natl. Acad. Sci."},{"key":"9_CR18","doi-asserted-by":"publisher","unstructured":"Rangamani, A., Banburski-Fahey, A.: Neural collapse in deep homogeneous classifiers and the role of weight decay. In: ICASSP 2022\u20132022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4243\u20134247, May 2022. https:\/\/doi.org\/10.1109\/ICASSP43922.2022.9746778. ISSN: 2379-190X","DOI":"10.1109\/ICASSP43922.2022.9746778"},{"key":"9_CR19","doi-asserted-by":"publisher","unstructured":"Thrampoulidis, C., Kini, G.R., Vakilian, V., Behnia, T.: Imbalance trouble: revisiting neural-collapse geometry, August 2022. https:\/\/doi.org\/10.48550\/arXiv.2208.05512. http:\/\/arxiv.org\/abs\/2208.05512. arXiv:2208.05512 [cs, stat]","DOI":"10.48550\/arXiv.2208.05512"},{"issue":"4","key":"9_CR20","doi-asserted-by":"publisher","first-page":"5569","DOI":"10.1007\/s11042-022-13459-x","volume":"82","author":"M Umer","year":"2023","unstructured":"Umer, M., et al.: Impact of convolutional neural network and FastText embedding on text classification. Multimed. Tools Appl. 82(4), 5569\u20135585 (2023). https:\/\/doi.org\/10.1007\/s11042-022-13459-x","journal-title":"Multimed. Tools Appl."},{"key":"9_CR21","doi-asserted-by":"publisher","unstructured":"Wasserman, L.: Topological data analysis, September 2016. https:\/\/doi.org\/10.48550\/arXiv.1609.08227. http:\/\/arxiv.org\/abs\/1609.08227. arXiv:1609.08227 [stat]","DOI":"10.48550\/arXiv.1609.08227"},{"key":"9_CR22","unstructured":"Yaras, C., Wang, P., Zhu, Z., Balzano, L., Qu, Q.: Neural collapse with normalized features: a geometric analysis over the riemannian manifold, September 2022. http:\/\/arxiv.org\/abs\/2209.09211. arXiv:2209.09211 [cs, eess, math, stat]"},{"key":"9_CR23","unstructured":"Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https:\/\/papers.nips.cc\/paper\/2015\/hash\/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html"},{"key":"9_CR24","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners\u2019 guide to) convolutional neural networks for sentence classification, April 2016. http:\/\/arxiv.org\/abs\/1510.03820. arXiv:1510.03820 [cs]","DOI":"10.21437\/Interspeech.2016-354"},{"key":"9_CR25","doi-asserted-by":"crossref","unstructured":"Zhong, Z., et al.: Understanding imbalanced semantic segmentation through neural collapse (2023)","DOI":"10.1109\/CVPR52729.2023.01873"},{"key":"9_CR26","unstructured":"Zhou, J., Li, X., Ding, T., You, C., Qu, Q., Zhu, Z.: On the optimization landscape of neural collapse under MSE loss: global optimality with unconstrained features. In: Proceedings of the 39th International Conference on Machine Learning, pp. 27179\u201327202. PMLR, June 2022. https:\/\/proceedings.mlr.press\/v162\/zhou22c.html. ISSN: 2640-3498"},{"key":"9_CR27","doi-asserted-by":"publisher","unstructured":"Zhou, J., et al.: Are all losses created equal: a neural collapse perspective, October 2022. https:\/\/doi.org\/10.48550\/arXiv.2210.02192. https:\/\/arxiv.org\/abs\/2210.02192v2","DOI":"10.48550\/arXiv.2210.02192"},{"key":"9_CR28","unstructured":"Zhu, Z., et al.: A geometric analysis of neural collapse with unconstrained features (2021)"}],"container-title":["Communications in Computer and Information Science","Deep Learning Theory and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-39059-3_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,18]],"date-time":"2023-12-18T03:12:48Z","timestamp":1702869168000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-39059-3_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031390586","9783031390593"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-39059-3_9","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"31 July 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DeLTA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Deep Learning Theory and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Rome","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"delta2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/delta.scitevents.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"PRIMORIS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"42","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"9","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}