{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T18:04:05Z","timestamp":1742925845356,"version":"3.40.3"},"publisher-location":"Cham","reference-count":21,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031383175"},{"type":"electronic","value":"9783031383182"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-38318-2_25","type":"book-chapter","created":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T06:02:33Z","timestamp":1690264953000},"page":"245-255","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Dynamic Parameterization of Metaheuristics Using a Multi-agent System for the Optimization of Electricity Market Participation"],"prefix":"10.1007","author":[{"given":"Jo\u00e3o","family":"Carvalho","sequence":"first","affiliation":[]},{"given":"Tiago","family":"Pinto","sequence":"additional","affiliation":[]},{"given":"Juan M.","family":"Home-Ortiz","sequence":"additional","affiliation":[]},{"given":"Brigida","family":"Teixeira","sequence":"additional","affiliation":[]},{"given":"Zita","family":"Vale","sequence":"additional","affiliation":[]},{"given":"Ruben","family":"Romero","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,26]]},"reference":[{"issue":"4","key":"25_CR1","doi-asserted-by":"publisher","first-page":"503","DOI":"10.1080\/0952813X.2013.782347","volume":"25","author":"A Gogna","year":"2013","unstructured":"Gogna, A., Tayal, A.: Metaheuristics: review and application. J. Exp. Theor. Artif. 25(4), 503\u2013526 (2013)","journal-title":"J. Exp. Theor. Artif."},{"issue":"14","key":"25_CR2","doi-asserted-by":"publisher","first-page":"6449","DOI":"10.3390\/app11146449","volume":"11","author":"F Peres","year":"2021","unstructured":"Peres, F., Castelli, M.: Combinatorial optimization problems and metaheuristics: review, challenges, design, and development. Appl. Sci. 11(14), 6449 (2021)","journal-title":"Appl. Sci."},{"key":"25_CR3","doi-asserted-by":"crossref","unstructured":"Tatsis, V.A., Parsopoulos, K.E.: Reinforced online parameter adaptation method for population-based metaheuristics. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia (2020)","DOI":"10.1109\/SSCI47803.2020.9308488"},{"key":"25_CR4","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1016\/j.eswa.2012.12.033","volume":"40","author":"P Melin","year":"2013","unstructured":"Melin, P., et al.: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 40, 8 (2013)","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"25_CR5","doi-asserted-by":"publisher","first-page":"975","DOI":"10.3934\/mbe.2020052","volume":"17","author":"CJM Moctezuma","year":"2019","unstructured":"Moctezuma, C.J.M., Mora, J., Mendoza, M.G.: A self-adaptive mechanism using weibull probability distribution to improve metaheuristic algorithms to solve combinatorial optimization problems in dynamic environments. Math. Biosci. Eng. 17(2), 975\u2013997 (2019)","journal-title":"Math. Biosci. Eng."},{"key":"25_CR6","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1016\/j.ins.2013.02.041","volume":"237","author":"I Boussa\u00efd","year":"2013","unstructured":"Boussa\u00efd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82\u2013117 (2013)","journal-title":"Inf. Sci."},{"key":"25_CR7","doi-asserted-by":"publisher","first-page":"106040","DOI":"10.1016\/j.cie.2019.106040","volume":"137","author":"T Dokeroglu","year":"2019","unstructured":"Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)","journal-title":"Comput. Ind. Eng."},{"issue":"1\u20132","key":"25_CR8","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/s10479-021-04075-3","volume":"304","author":"M Corazza","year":"2021","unstructured":"Corazza, M., di Tollo, G., Fasano, G., Pesenti, R.: A novel hybrid PSO-based metaheuristic for costly portfolio selection problems. Ann. Oper. Res. 304(1\u20132), 109\u2013137 (2021)","journal-title":"Ann. Oper. Res."},{"key":"25_CR9","first-page":"42","volume":"60","author":"D Paul","year":"2017","unstructured":"Paul, D., Su, R., Romain, M., S\u00e9bastien, V., Pierre, V., Isabelle, G.: Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier. Pattern Recogn. 60, 42\u201349 (2017)","journal-title":"Pattern Recogn."},{"issue":"5","key":"25_CR10","doi-asserted-by":"publisher","first-page":"3455","DOI":"10.1007\/s00500-019-04106-z","volume":"24","author":"EM El-Gendy","year":"2019","unstructured":"El-Gendy, E.M., Saafan, M.M., Elksas, M.S., Saraya, S.F., Areed, F.F.G.: Applying hybrid genetic\u2013PSO technique for tuning an adaptive PID controller used in a chemical process. Soft. Comput. 24(5), 3455\u20133474 (2019). https:\/\/doi.org\/10.1007\/s00500-019-04106-z","journal-title":"Soft. Comput."},{"key":"25_CR11","doi-asserted-by":"crossref","first-page":"10","DOI":"10.3390\/en11040976","volume":"11","author":"JG \u00c1lvarez","year":"2018","unstructured":"\u00c1lvarez, J.G., Gonzalez, M.A., Vela, C., Varela, R.: Electric vehicle charging scheduling by an enhanced artificial bee colony algorithm. Energies 11, 10 (2018)","journal-title":"Energies"},{"issue":"4","key":"25_CR12","doi-asserted-by":"publisher","first-page":"62","DOI":"10.5755\/j01.eie.25.4.23972","volume":"25","author":"FA Ozbay","year":"2019","unstructured":"Ozbay, F.A., Alatas, B.: A novel approach for detection of fake news on social media using metaheuristic optimization algorithms. Elektronika ir Elektrotechnika 25(4), 62\u201367 (2019)","journal-title":"Elektronika ir Elektrotechnika"},{"key":"25_CR13","doi-asserted-by":"publisher","first-page":"368","DOI":"10.1016\/j.asoc.2018.09.034","volume":"74","author":"VA Tatsis","year":"2019","unstructured":"Tatsis, V.A., Parsopoulos, K.E.: Dynamic parameter adaptation in metaheuristics using gradient approximation and line search. Appl. Soft Comput. 74, 368\u2013384 (2019)","journal-title":"Appl. Soft Comput."},{"key":"25_CR14","unstructured":"Ejabberd, \u201cEjabberd,\u201d https:\/\/docs.ejabberd.im\/get-started\/. Acedido em 2022"},{"key":"25_CR15","unstructured":"Eberhart, R., Kennedy, J.: Particle swarm optimization. In: MHS\u201995 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan (1996)"},{"key":"25_CR16","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1007\/s00500-016-2474-6","volume":"22","author":"D Wang","year":"2018","unstructured":"Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft Comput. 22, 387\u2013408 (2018)","journal-title":"Soft Comput."},{"key":"25_CR17","doi-asserted-by":"crossref","unstructured":"Jain, N.K., Nangia, U., Jain, J.: A review of particle swarm optimization. J. Inst. Eng.: Ser. B 99, 407\u2013411 (2018)","DOI":"10.1007\/s40031-018-0323-y"},{"issue":"21","key":"25_CR18","doi-asserted-by":"publisher","first-page":"433","DOI":"10.21105\/joss.00433","volume":"3","author":"LJ Miranda","year":"2018","unstructured":"Miranda, L.J.: PySwarms: a research toolkit for particle swarm optimization in Python. J. Open Source Softw. 3(21), 433 (2018)","journal-title":"J. Open Source Softw."},{"issue":"11","key":"25_CR19","doi-asserted-by":"publisher","first-page":"4774","DOI":"10.3390\/app11114774","volume":"11","author":"I Bakurov","year":"2021","unstructured":"Bakurov, I., Buzzelli, M., Castelli, M., Vanneschi, L., Schettini, R.: General purpose optimization library (GPOL): a flexible and efficient multi-purpose optimization library in Python. Appl. Sci. 11(11), 4774 (2021)","journal-title":"Appl. Sci."},{"key":"25_CR20","unstructured":"Veiga, B., Faia, R., Pinto, T., Vale, Z.: https:\/\/pypi.org\/project\/Pyticle-Swarm\/. Accessed 14 Jan 2022. https:\/\/pypi.org\/project\/Pyticle-Swarm\/#description. Acedido em 22 Jan 2022"},{"issue":"8","key":"25_CR21","doi-asserted-by":"publisher","first-page":"1720","DOI":"10.1109\/TNNLS.2015.2461491","volume":"27","author":"T Pinto","year":"2015","unstructured":"Pinto, T., et al.: Adaptive portfolio optimization for multiple electricity markets participation. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1720\u20131733 (2015)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."}],"container-title":["Lecture Notes in Networks and Systems","Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-38318-2_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,25]],"date-time":"2023-07-25T06:13:13Z","timestamp":1690265593000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-38318-2_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031383175","9783031383182"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-38318-2_25","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"26 July 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Distributed Computing and Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guimaraes","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dcai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.dcai-conference.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}