{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T04:24:08Z","timestamp":1726201448568},"publisher-location":"Cham","reference-count":35,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031371288"},{"type":"electronic","value":"9783031371295"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-37129-5_19","type":"book-chapter","created":{"date-parts":[[2023,6,29]],"date-time":"2023-06-29T01:01:46Z","timestamp":1688000506000},"page":"220-231","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Fire Severity and Vegetation Recovery Determination Using GEE and Sentinel-2: The Case of Peschici Fire"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1484-5082","authenticated-orcid":false,"given":"Valentina","family":"Santarsiero","sequence":"first","affiliation":[]},{"given":"Antonio","family":"Lanorte","sequence":"additional","affiliation":[]},{"given":"Gabriele","family":"Nol\u00e8","sequence":"additional","affiliation":[]},{"given":"Giuseppe","family":"Cillis","sequence":"additional","affiliation":[]},{"given":"Francesco Vito","family":"Ronco","sequence":"additional","affiliation":[]},{"given":"Beniamino","family":"Murgante","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,30]]},"reference":[{"key":"19_CR1","doi-asserted-by":"publisher","first-page":"100251","DOI":"10.1016\/j.coesh.2021.100251","volume":"21","author":"F P\u00e9rez-Cabello","year":"2021","unstructured":"P\u00e9rez-Cabello, F., Montorio, R., Alves, D.B.: Remote sensing techniques to assess post-fire vegetation recovery. Curr. Opin. Environ. Sci. Heal. 21, 100251 (2021). https:\/\/doi.org\/10.1016\/j.coesh.2021.100251","journal-title":"Curr. Opin. Environ. Sci. Heal."},{"key":"19_CR2","unstructured":"Ghermandi, B.L., Lanorte, A., Oddi, F., Lasaponara, R.: Assessing fire severity in semiarid 19 (2019)"},{"key":"19_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"590","DOI":"10.1007\/978-3-030-58811-3_43","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2020","author":"V Santarsiero","year":"2020","unstructured":"Santarsiero, V., et al.: Assessment of post fire soil erosion with ESA sentinel-2 data and RUSLE method in Apulia region (Southern Italy). In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 590\u2013603. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58811-3_43"},{"key":"19_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"670","DOI":"10.1007\/978-3-030-86979-3_47","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2021","author":"V Santarsiero","year":"2021","unstructured":"Santarsiero, V., et al.: A remote sensing and geo-statistical approaches to mapping burn areas in Apulia region (Southern Italy). In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12954, pp. 670\u2013681. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86979-3_47"},{"key":"19_CR5","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1016\/j.jag.2011.09.005","volume":"20","author":"A Lanorte","year":"2012","unstructured":"Lanorte, A., Danese, M., Lasaponara, R., Murgante, B.: Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 20, 42\u201351 (2012). https:\/\/doi.org\/10.1016\/j.jag.2011.09.005","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"19_CR6","doi-asserted-by":"publisher","first-page":"1751","DOI":"10.1080\/01431160210144732","volume":"24","author":"R D\u00edaz-Delgado","year":"2003","unstructured":"D\u00edaz-Delgado, R., Lloret, F., Pons, X.: Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 24, 1751\u20131763 (2003)","journal-title":"Int. J. Remote Sens."},{"key":"19_CR7","doi-asserted-by":"publisher","first-page":"673","DOI":"10.5194\/nhess-10-673-2010","volume":"10","author":"C Gouveia","year":"2010","unstructured":"Gouveia, C., DaCamara, C.C., Trigo, R.M.: Post-fire vegetation recovery in Portugal based on spot\/vegetation data. Nat. Hazards Earth Syst. Sci. 10, 673\u2013684 (2010). https:\/\/doi.org\/10.5194\/nhess-10-673-2010","journal-title":"Nat. Hazards Earth Syst. Sci."},{"key":"19_CR8","doi-asserted-by":"crossref","unstructured":"Rahman, S., Chang, H., Magill, C., Tomkins, K., Hehir, W.: Spatio-temporal assessment of fire severity and vegetation recovery utilising sentinel-2 imagery in New South Wales, Australia, pp. 9960\u20139963. Department of Environmental Sciences, Macquarie University, Australia (2019)","DOI":"10.1109\/IGARSS.2019.8899242"},{"key":"19_CR9","doi-asserted-by":"publisher","first-page":"686","DOI":"10.1890\/15-0225.1","volume":"26","author":"M Coppoletta","year":"2015","unstructured":"Coppoletta, M., Merriam, K.E., Collins, B.M.: Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol. Appl. 26, 686\u2013699 (2015). https:\/\/doi.org\/10.1890\/15-0225.1","journal-title":"Ecol. Appl."},{"key":"19_CR10","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1016\/j.jag.2015.11.002","volume":"45","author":"Z Zheng","year":"2016","unstructured":"Zheng, Z., Zeng, Y., Li, S., Huang, W.: A new burn severity index based on land surface temperature and enhanced vegetation index. Int. J. Appl. Earth Obs. Geoinf. 45, 84\u201394 (2016). https:\/\/doi.org\/10.1016\/j.jag.2015.11.002","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"19_CR11","doi-asserted-by":"publisher","first-page":"20","DOI":"10.4018\/IJAEIS.2014040102","volume":"5","author":"G Nol\u00e8","year":"2014","unstructured":"Nol\u00e8, G., Lasaponara, R., Lanorte, A., Murgante, B.: Quantifying urban sprawl with spatial autocorrelation techniques using multi-temporal satellite data. Int. J. Agric. Environ. Inf. Syst. 5, 20\u201338 (2014). https:\/\/doi.org\/10.4018\/IJAEIS.2014040102","journal-title":"Int. J. Agric. Environ. Inf. Syst."},{"key":"19_CR12","doi-asserted-by":"publisher","first-page":"2928","DOI":"10.3390\/su12072928","volume":"12","author":"F Scorza","year":"2020","unstructured":"Scorza, F., Pilogallo, A., Saganeiti, L., Murgante, B.: Natura 2000 areas and sites of national interest (SNI): measuring (un)integration between naturalness preservation and environmental remediation policies. Sustainability 12, 2928 (2020). https:\/\/doi.org\/10.3390\/su12072928","journal-title":"Sustainability"},{"key":"19_CR13","doi-asserted-by":"publisher","first-page":"232","DOI":"10.1016\/j.apgeog.2014.11.016","volume":"56","author":"G Ireland","year":"2015","unstructured":"Ireland, G., Petropoulos, G.P.: Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: a case study from the Montane Cordillera Ecozones of Western Canada. Appl. Geogr. 56, 232\u2013248 (2015)","journal-title":"Appl. Geogr."},{"key":"19_CR14","doi-asserted-by":"publisher","first-page":"7905","DOI":"10.1080\/01431161.2010.524678","volume":"32","author":"X Chen","year":"2011","unstructured":"Chen, X., et al.: Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. Remote Sens. 32, 7905\u20137927 (2011)","journal-title":"Int. J. Remote Sens."},{"key":"19_CR15","doi-asserted-by":"publisher","first-page":"554","DOI":"10.1016\/j.rse.2008.10.011","volume":"113","author":"A De Santis","year":"2009","unstructured":"De Santis, A., Chuvieco, E.: GeoCBI: a modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 113, 554\u2013562 (2009)","journal-title":"Remote Sens. Environ."},{"key":"19_CR16","doi-asserted-by":"crossref","unstructured":"Xulu, S., Mbatha, N.: Burned Area Mapping over the Southern Cape Forestry Region, South Africa Using Sentinel Data within GEE Cloud Platform (2021)","DOI":"10.3390\/ijgi10080511"},{"key":"19_CR17","doi-asserted-by":"crossref","unstructured":"Ye, J., Wang, N., Sun, M., Liu, Q., Ding, N., Li, M.: A New Method for the Rapid Determination of Fire Disturbance Events Using GEE and the VCT Algorithm\u2014A Case Study in Southwestern and Northeastern China (2023)","DOI":"10.3390\/rs15020413"},{"key":"19_CR18","doi-asserted-by":"publisher","first-page":"1509","DOI":"10.3390\/rs10101509","volume":"10","author":"L Kumar","year":"2018","unstructured":"Kumar, L., Mutanga, O.: Google Earth Engine applications since inception: usage, trends, and potential. Remote Sens. 10, 1509 (2018)","journal-title":"Remote Sens."},{"key":"19_CR19","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1016\/j.rse.2017.06.031","volume":"202","author":"N Gorelick","year":"2017","unstructured":"Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18\u201327 (2017)","journal-title":"Remote Sens. Environ."},{"issue":"2","key":"19_CR20","doi-asserted-by":"publisher","first-page":"645","DOI":"10.1007\/s12145-020-00566-2","volume":"14","author":"P Konkathi","year":"2021","unstructured":"Konkathi, P., Shetty, A.: Inter comparison of post-fire burn severity indices of Landsat-8 and Sentinel-2 imagery using Google Earth Engine. Earth Sci. Inf. 14(2), 645\u2013653 (2021). https:\/\/doi.org\/10.1007\/s12145-020-00566-2","journal-title":"Earth Sci. Inf."},{"key":"19_CR21","doi-asserted-by":"publisher","first-page":"100324","DOI":"10.1016\/j.rsase.2020.100324","volume":"18","author":"S Bar","year":"2020","unstructured":"Bar, S., Parida, B.R., Pandey, A.C.: Landsat-8 and Sentinel-2 based forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 18, 100324 (2020). https:\/\/doi.org\/10.1016\/j.rsase.2020.100324","journal-title":"Remote Sens. Appl. Soc. Environ."},{"key":"19_CR22","first-page":"32","volume":"42","author":"N Puletti","year":"2018","unstructured":"Puletti, N., Chianucci, F., Castaldi, C.: Use of Sentinel-2 for forest classification in Mediterranean environments. Ann. Silvic. Res. 42, 32\u201338 (2018)","journal-title":"Ann. Silvic. Res."},{"key":"19_CR23","doi-asserted-by":"publisher","first-page":"622","DOI":"10.3390\/rs11060622","volume":"11","author":"F Filipponi","year":"2019","unstructured":"Filipponi, F.: Exploitation of sentinel-2 time series to map burned areas at the national level: a case study on the 2017 Italy wildfires. Remote Sens. 11, 622 (2019)","journal-title":"Remote Sens."},{"key":"19_CR24","doi-asserted-by":"publisher","first-page":"645","DOI":"10.1016\/j.rse.2008.11.009","volume":"113","author":"JD Miller","year":"2009","unstructured":"Miller, J.D., et al.: Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sens. Environ. 113, 645\u2013656 (2009)","journal-title":"Remote Sens. Environ."},{"key":"19_CR25","unstructured":"Key, C., Glacier Field Station Center: Evaluate sensitivities of burn-severity mapping algorithms for different ecosystems and fire histories in the United States. Final Report to the Joint Fire Science Program (2006)"},{"key":"19_CR26","doi-asserted-by":"publisher","first-page":"116","DOI":"10.1071\/WF07049","volume":"18","author":"JE Keeley","year":"2009","unstructured":"Keeley, J.E.: Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildl. Fire 18, 116\u2013126 (2009)","journal-title":"Int. J. Wildl. Fire"},{"key":"19_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"505","DOI":"10.1007\/978-3-030-58814-4_36","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2020","author":"G Nol\u00e8","year":"2020","unstructured":"Nol\u00e8, G., et al.: Model of post fire erosion assessment using RUSLE method, GIS tools and ESA Sentinel data. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12253, pp. 505\u2013516. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58814-4_36"},{"key":"19_CR28","doi-asserted-by":"publisher","first-page":"171","DOI":"10.3390\/rs12010171","volume":"12","author":"M Lanfredi","year":"2020","unstructured":"Lanfredi, M., Coluzzi, R., Imbrenda, V., Macchiato, M., Simoniello, T.: Analyzing space\u2013time coherence in precipitation seasonality across different European climates. Remote Sens. 12, 171 (2020)","journal-title":"Remote Sens."},{"key":"19_CR29","doi-asserted-by":"publisher","unstructured":"Lanfredi, M., Coppola, R., D\u2019Emilio, M., Imbrenda, V., Macchiato, M., Simoniello, T.: A geostatistics-assisted approach to the deterministic approximation of climate data. Environ. Model. Softw. 66, 69\u201377 (2015). https:\/\/doi.org\/10.1016\/j.envsoft.2014.12.009","DOI":"10.1016\/j.envsoft.2014.12.009"},{"key":"19_CR30","doi-asserted-by":"publisher","unstructured":"Nol\u00e8, G., et al.: Model of post fire erosion assessment using RUSLE method, GIS tools and ESA Sentinel DATA. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNTCS, vol. 12253, pp. 505\u2013516. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58814-4_36","DOI":"10.1007\/978-3-030-58814-4_36"},{"key":"19_CR31","first-page":"42","volume":"20","author":"A Lanorte","year":"2013","unstructured":"Lanorte, A., Danese, M., Lasaponara, R., Murgante, B.: Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 20, 42\u201351 (2013)","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"19_CR32","doi-asserted-by":"publisher","unstructured":"Shakesby, R.A.: Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Sci. Rev. 105, 71\u2013100 (2011). https:\/\/doi.org\/10.1016\/j.earscirev.2011.01.001","DOI":"10.1016\/j.earscirev.2011.01.001"},{"key":"19_CR33","doi-asserted-by":"publisher","unstructured":"Soverel, N.O., Perrakis, D.D.B., Coops, N.C.: Estimating burn severity from Landsat dNBR and RdNBR indices across Western Canada. Remote Sens. Environ. 114, 1896\u20131909 (2010). https:\/\/doi.org\/10.1016\/j.rse.2010.03.013","DOI":"10.1016\/j.rse.2010.03.013"},{"key":"19_CR34","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1109\/LGRS.2005.858485","volume":"3","author":"DP Roy","year":"2006","unstructured":"Roy, D.P., Boschetti, L., Trigg, S.N.: Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 3, 112\u2013116 (2006). https:\/\/doi.org\/10.1109\/LGRS.2005.858485","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"19_CR35","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1016\/S0034-4257(01)00305-4","volume":"80","author":"G Zhu","year":"2002","unstructured":"Zhu, G., Blumberg, D.G.: Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel. Remote Sens. Environ. 80, 233\u2013240 (2002). https:\/\/doi.org\/10.1016\/S0034-4257(01)00305-4","journal-title":"Remote Sens. Environ."}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2023 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-37129-5_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,29]],"date-time":"2023-06-29T02:06:17Z","timestamp":1688004377000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-37129-5_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031371288","9783031371295"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-37129-5_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"30 June 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Athens","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Custom based on Cyberchair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"283","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"PHD Showcase Papers: 6(for main conf) \/ For ICCSA 2023 Workshops 876 subm sent, 350 full papers and 29 short papers accepted, additional PHD Showcase Papers: 2","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}