{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:38:29Z","timestamp":1740101909041,"version":"3.37.3"},"publisher-location":"Cham","reference-count":42,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031371257"},{"type":"electronic","value":"9783031371264"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-37126-4_10","type":"book-chapter","created":{"date-parts":[[2023,6,28]],"date-time":"2023-06-28T23:04:56Z","timestamp":1687993496000},"page":"133-149","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Guided Clustering for\u00a0Selecting Representatives Samples in\u00a0Chemical Databases"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-5927-1855","authenticated-orcid":false,"given":"Felipe V.","family":"Calderan","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3253-1220","authenticated-orcid":false,"given":"Jo\u00e3o Paulo A.","family":"de Mendon\u00e7a","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0645-8760","authenticated-orcid":false,"given":"Juarez L. F. Da","family":"Silva","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8147-554X","authenticated-orcid":false,"given":"Marcos G.","family":"Quiles","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,29]]},"reference":[{"doi-asserted-by":"publisher","unstructured":"Abdi, H., Williams, L.J.: Principal component analysis. WIREs. Comput. Statist. 2(4), 433\u2013459 (2010). https:\/\/doi.org\/10.1002\/wics.101. https:\/\/onlinelibrary.wiley.com\/doi\/abs\/10.1002\/wics.101","key":"10_CR1","DOI":"10.1002\/wics.101"},{"doi-asserted-by":"publisher","unstructured":"Bai, L., Liang, J., Cao, F.: Semi-supervised clustering with constraints of different types from multiple information sources. IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 1 (2020). https:\/\/doi.org\/10.1109\/TPAMI.2020.2979699","key":"10_CR2","DOI":"10.1109\/TPAMI.2020.2979699"},{"doi-asserted-by":"publisher","unstructured":"Batista, K.E.A., Ocampo-Restrepo, V.K., Soares, M.D., Quiles, M.G., Piotrowski, M.J., Da Silva, J.L.F.: Ab Initio investigation of $$co_2$$ adsorption on $$13$$-atom $$4d$$ clusters. J. Chem. Inf. Model. 60(2), 537\u2013545 (2020). https:\/\/doi.org\/10.1021\/acs.jcim.9b00792. https:\/\/doi.org\/10.1021\/acs.jcim.9b00792","key":"10_CR3","DOI":"10.1021\/acs.jcim.9b00792"},{"doi-asserted-by":"publisher","unstructured":"Batista, K.E.A., Soares, M.D., Quiles, M.G., Piotrowski, M.J., Da Silva, J.L.F.: Energy decomposition to access the stability changes induced by co adsorption on transition-metal 13-atom clusters. J. Chem. Inf. Model. 61(5), 2294\u20132301 (2021). https:\/\/doi.org\/10.1021\/acs.jcim.1c00097. https:\/\/doi.org\/10.1021\/acs.jcim.1c00097. pMID: 33939914","key":"10_CR4","DOI":"10.1021\/acs.jcim.1c00097"},{"issue":"1","key":"10_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1021\/ci980109e","volume":"39","author":"DM Bayada","year":"1999","unstructured":"Bayada, D.M., Hamersma, H., van Geerestein, V.J.: Molecular diversity and representativity in chemical databases. J. Chem. Inf. Comput. Sci. 39(1), 1\u201310 (1999)","journal-title":"J. Chem. Inf. Comput. Sci."},{"doi-asserted-by":"publisher","unstructured":"Blum, V., et al.: Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180(11), 2175\u20132196 (2009). https:\/\/doi.org\/10.1016\/j.cpc.2009.06.022. https:\/\/doi.org\/10.1016\/j.cpc.2009.06.022","key":"10_CR6","DOI":"10.1016\/j.cpc.2009.06.022"},{"key":"10_CR7","doi-asserted-by":"publisher","DOI":"10.1016\/j.cplett.2022.139615","volume":"798","author":"M Boubchir","year":"2022","unstructured":"Boubchir, M., Boubchir, R., Aourag, H.: The principal component analysis as a tool for predicting the mechanical properties of perovskites and inverse perovskites. Chem. Phys. Lett. 798, 139615 (2022)","journal-title":"Chem. Phys. Lett."},{"issue":"1","key":"10_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-017-00839-3","volume":"8","author":"F Brockherde","year":"2017","unstructured":"Brockherde, F., Vogt, L., Li, L., Tuckerman, M.E., Burke, K., M\u00fcller, K.R.: Bypassing the Kohn-sham equations with machine learning. Nat. Commun. 8(1), 1\u201310 (2017)","journal-title":"Nat. Commun."},{"issue":"7715","key":"10_CR9","doi-asserted-by":"publisher","first-page":"547","DOI":"10.1038\/s41586-018-0337-2","volume":"559","author":"KT Butler","year":"2018","unstructured":"Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A.: Machine learning for molecular and materials science. Nature 559(7715), 547 (2018)","journal-title":"Nature"},{"doi-asserted-by":"publisher","unstructured":"Cali\u0144ski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Statist. 3(1), 1\u201327 (1974). https:\/\/doi.org\/10.1080\/03610927408827101. https:\/\/www.tandfonline.com\/doi\/abs\/10.1080\/03610927408827101","key":"10_CR10","DOI":"10.1080\/03610927408827101"},{"issue":"2","key":"10_CR11","first-page":"1","volume":"1","author":"SH Cha","year":"2007","unstructured":"Cha, S.H.: Comprehensive survey on distance\/similarity measures between probability density functions. City 1(2), 1 (2007)","journal-title":"City"},{"doi-asserted-by":"publisher","unstructured":"Craw, S.: Manhattan Distance, p. 639. Springer, US, Boston, MA (2010). https:\/\/doi.org\/10.1007\/978-0-387-30164-8_506","key":"10_CR12","DOI":"10.1007\/978-0-387-30164-8_506"},{"issue":"2","key":"10_CR13","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1021\/ci990435+","volume":"40","author":"MF Engels","year":"2000","unstructured":"Engels, M.F., Thielemans, T., Verbinnen, D., Tollenaere, J.P., Verbeeck, R.: Cerberus: a system supporting the sequential screening process. J. Chem. Inf. Comput. Sci. 40(2), 241\u2013245 (2000)","journal-title":"J. Chem. Inf. Comput. Sci."},{"doi-asserted-by":"publisher","unstructured":"Fel\u00edcio-Sousa, P., et al.: Ab initio insights into the structural, energetic, electronic, and stability properties of mixed $$ce_nzr_{15-n}o_{30}$$ nanoclusters. Phys. Chem. Chem. Phys. 21(48), 26637\u201326646 (2019). https:\/\/doi.org\/10.1039\/c9cp04762j. https:\/\/doi.org\/10.1039\/c9cp04762j","key":"10_CR14","DOI":"10.1039\/c9cp04762j"},{"doi-asserted-by":"publisher","unstructured":"Havu, V., Blum, V., Havu, P., Scheffler, M.: Efficient integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 228(22), 8367\u20138379 (2009). https:\/\/doi.org\/10.1016\/j.jcp.2009.08.008. https:\/\/doi.org\/10.1016\/j.jcp.2009.08.008","key":"10_CR15","DOI":"10.1016\/j.jcp.2009.08.008"},{"issue":"10","key":"10_CR16","doi-asserted-by":"publisher","first-page":"966","DOI":"10.2355\/isijinternational.39.966","volume":"39","author":"B Hkdh","year":"1999","unstructured":"Hkdh, B.: Neural networks in materials science. ISIJ Int. 39(10), 966\u2013979 (1999)","journal-title":"ISIJ Int."},{"doi-asserted-by":"publisher","unstructured":"Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264\u2013323 (1999). https:\/\/doi.org\/10.1145\/331499.331504. https:\/\/dx.doi.org\/10.1145\/331499.331504","key":"10_CR17","DOI":"10.1145\/331499.331504"},{"doi-asserted-by":"crossref","unstructured":"Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264\u2013323 (Sep1999) 10.1145\/331499.331504, https:\/\/doi.org\/10.1145\/331499.331504","key":"10_CR18","DOI":"10.1145\/331499.331504"},{"doi-asserted-by":"publisher","unstructured":"Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651\u2013666 (2010). https:\/\/doi.org\/10.1016\/j.patrec.2009.09.011. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0167865509002323. Award winning papers from the 19th International Conference on Pattern Recognition (ICPR)","key":"10_CR19","DOI":"10.1016\/j.patrec.2009.09.011"},{"issue":"1","key":"10_CR20","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1007\/BF00337288","volume":"43","author":"T Kohonen","year":"1982","unstructured":"Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59\u201369 (1982)","journal-title":"Biol. Cybern."},{"doi-asserted-by":"publisher","unstructured":"van Laarhoven P.J.M., A.E.: Simulated annealing. In: Simulated Annealing: Theory and Applications, vol. 37, pp. 7\u201315. Springer, Dordrecht (1987). https:\/\/doi.org\/10.1007\/978-94-015-7744-1_2","key":"10_CR21","DOI":"10.1007\/978-94-015-7744-1_2"},{"issue":"8","key":"10_CR22","doi-asserted-by":"publisher","first-page":"1538","DOI":"10.1016\/j.drudis.2018.05.010","volume":"23","author":"YC Lo","year":"2018","unstructured":"Lo, Y.C., Rensi, S.E., Torng, W., Altman, R.B.: Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 23(8), 1538\u20131546 (2018)","journal-title":"Drug Discov. Today"},{"unstructured":"van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579\u20132605 (2008). https:\/\/www.jmlr.org\/papers\/v9\/vandermaaten08a.html","key":"10_CR23"},{"doi-asserted-by":"crossref","unstructured":"McGregor, M.J., Pallai, P.V.: Clustering of large databases of compounds: using the mdl \u201ckeys\u201d as structural descriptors. J. Chem. Inf. Comput. Sci. 37(3), 443\u2013448 (1997)","key":"10_CR24","DOI":"10.1021\/ci960151e"},{"doi-asserted-by":"publisher","unstructured":"de Mendon\u00e7a, J.P.A., Calderan, F.V., Louren\u00e7o, T.C., Quiles, M.G., Da Silva, J.L.F.: Theoretical framework based on molecular dynamics and data mining analyses for the study of potential energy surfaces of finite-size particles. J. Chem. Inf. Model. 62(22), 5503\u20135512 (2022). https:\/\/doi.org\/10.1021\/acs.jcim.2c00957. https:\/\/doi.org\/10.1021\/acs.jcim.2c00957. pMID: 36302503","key":"10_CR25","DOI":"10.1021\/acs.jcim.2c00957"},{"issue":"1","key":"10_CR26","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1146\/annurev-matsci-070218-010015","volume":"50","author":"D Morgan","year":"2020","unstructured":"Morgan, D., Jacobs, R.: Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 50(1), 71\u2013103 (2020). https:\/\/doi.org\/10.1146\/annurev-matsci-070218-010015","journal-title":"Annu. Rev. Mater. Res."},{"key":"10_CR27","doi-asserted-by":"publisher","first-page":"493","DOI":"10.1021\/jp046244d","volume":"109","author":"KD Nielson","year":"2005","unstructured":"Nielson, K.D., van Duin, A.C.T., Oxgaard, J., Deng, W.Q., Goddard, W.A.: Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A 109, 493\u2013499 (2005)","journal-title":"J. Phys. Chem. A"},{"doi-asserted-by":"publisher","unstructured":"Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). https:\/\/doi.org\/10.1007\/978-0-387-40065-5","key":"10_CR28","DOI":"10.1007\/978-0-387-40065-5"},{"doi-asserted-by":"publisher","unstructured":"Olson, B., Hashmi, I., Molloy, K., Shehu, A.: Basin hopping as a general and versatile optimization framework for the characterization of biological macromolecules. Advances in Artificial Intelligence 2012 (2012). https:\/\/doi.org\/10.1155\/2012\/674832","key":"10_CR29","DOI":"10.1155\/2012\/674832"},{"doi-asserted-by":"publisher","unstructured":"Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982\u20139985 (1996). https:\/\/doi.org\/10.1063\/1.472933","key":"10_CR30","DOI":"10.1063\/1.472933"},{"doi-asserted-by":"publisher","unstructured":"Rondina, G.G., Da Silva, J.L.F.: Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles. J. Chem. Inf. Model. 53(9), 2282\u20132298 (2013). https:\/\/doi.org\/10.1021\/ci400224z","key":"10_CR31","DOI":"10.1021\/ci400224z"},{"unstructured":"Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 410\u2013420 (2007)","key":"10_CR32"},{"doi-asserted-by":"publisher","unstructured":"Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53\u201365 (1987). https:\/\/doi.org\/10.1016\/0377-0427(87)90125-7. https:\/\/www.sciencedirect.com\/science\/article\/pii\/0377042787901257","key":"10_CR33","DOI":"10.1016\/0377-0427(87)90125-7"},{"key":"10_CR34","doi-asserted-by":"publisher","first-page":"9396","DOI":"10.1021\/jp004368u","volume":"105","author":"ACT van Duin","year":"2001","unstructured":"van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396\u20139409 (2001)","journal-title":"J. Phys. Chem. A"},{"doi-asserted-by":"publisher","unstructured":"van Lenthe, E., Snijders, J.G., Baerends, E.J.: The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys. 105(15), 6505\u20136516 (1996). https:\/\/doi.org\/10.1063\/1.472460","key":"10_CR35","DOI":"10.1063\/1.472460"},{"doi-asserted-by":"publisher","unstructured":"Venna, J., Kaski, S.: Local multidimensional scaling. Neural Netw. 19(6), 889\u2013899 (2006). https:\/\/doi.org\/10.1016\/j.neunet.2006.05.014. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0893608006000724. Advances in Self Organising Maps - WSOM2005","key":"10_CR36","DOI":"10.1016\/j.neunet.2006.05.014"},{"unstructured":"Wagstaff, K., Cardie, C., Rogers, S., Schr\u00f6dl, S., et al.: Constrained k-means clustering with background knowledge. In: ICML, vol. 1, pp. 577\u2013584 (2001)","key":"10_CR37"},{"doi-asserted-by":"publisher","unstructured":"Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-jones clusters containing up to 110 atoms. J. Phys. Chemis. A 101(28), 5111\u20135116 (1997). https:\/\/doi.org\/10.1021\/jp970984n","key":"10_CR38","DOI":"10.1021\/jp970984n"},{"issue":"301","key":"10_CR39","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1080\/01621459.1963.10500845","volume":"58","author":"JH Ward Jr","year":"1963","unstructured":"Ward, J.H., Jr.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236\u2013244 (1963)","journal-title":"J. Am. Stat. Assoc."},{"unstructured":"Yang, X.S.: Introduction to Mathematical Optimization: From Linear Programming to Metaheuristics. Cambridge International2 Science Publishing (2008)","key":"10_CR40"},{"key":"10_CR41","doi-asserted-by":"publisher","DOI":"10.1016\/j.mtcomm.2023.105902","volume":"35","author":"J Zheng","year":"2023","unstructured":"Zheng, J., Lu, T., Lian, Z., Li, M., Lu, W.: Machine learning assisted classification of post-treatment amines for increasing the stability of organic-inorganic hybrid perovskites. Mater. Today Commun. 35, 105902 (2023)","journal-title":"Mater. Today Commun."},{"doi-asserted-by":"publisher","unstructured":"Zibordi-Besse, L., Seminovski, Y., Rosalino, I., Guedes-Sobrinho, D., Da Silva, J.L.F.: Physical and chemical properties of unsupported $$(mo_2)_n$$ clusters for $$m$$ = $$ti$$, $$zr$$, or $$ce$$ and $$n = 1--15$$: A density functional theory study combined with the tree-growth scheme and euclidean similarity distance algorithm. J. Phys. Chem. C 122(48), 27702\u201327712 (2018). https:\/\/doi.org\/10.1021\/acs.jpcc.8b08299","key":"10_CR42","DOI":"10.1021\/acs.jpcc.8b08299"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2023 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-37126-4_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,15]],"date-time":"2023-12-15T15:05:40Z","timestamp":1702652740000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-37126-4_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031371257","9783031371264"],"references-count":42,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-37126-4_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"29 June 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Athens","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Custom based on Cyberchair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"283","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"PHD Showcase Papers: 6(for main conf) \/ For ICCSA 2023 Workshops 876 subm sent, 350 full papers and 29 short papers accepted, additional PHD Showcase Papers: 2","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}