{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T14:05:41Z","timestamp":1726409141626},"publisher-location":"Cham","reference-count":44,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031371165"},{"type":"electronic","value":"9783031371172"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-37117-2_15","type":"book-chapter","created":{"date-parts":[[2023,6,28]],"date-time":"2023-06-28T23:04:56Z","timestamp":1687993496000},"page":"191-205","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Sentiment Processing of Socio-political Discourse and Public Speeches"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8554-7627","authenticated-orcid":false,"given":"Gulmira","family":"Bekmanova","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8967-2625","authenticated-orcid":false,"given":"Banu","family":"Yergesh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2797-672X","authenticated-orcid":false,"given":"Aru","family":"Ukenova","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9272-8829","authenticated-orcid":false,"given":"Assel","family":"Omarbekova","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8964-3891","authenticated-orcid":false,"given":"Assel","family":"Mukanova","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9166-0677","authenticated-orcid":false,"given":"Yerkyn","family":"Ongarbayev","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,29]]},"reference":[{"key":"15_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"717","DOI":"10.1007\/978-3-030-24289-3_53","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2019","author":"G Bekmanova","year":"2019","unstructured":"Bekmanova, G., Yelibayeva, G., Aubakirova, S., Dyussupova, N., Sharipbay, A., Nyazova, R.: Methods for analyzing polarity of the Kazakh texts related to the terrorist threats. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 717\u2013730. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-24289-3_53"},{"issue":"1","key":"15_CR2","doi-asserted-by":"publisher","first-page":"9","DOI":"10.3233\/WEB-190396","volume":"17","author":"B Yergesh","year":"2019","unstructured":"Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh text and their polarity. Web Intell. 17(1), 9\u201315 (2019). https:\/\/doi.org\/10.3233\/WEB-190396","journal-title":"Web Intell."},{"key":"15_CR3","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"170","DOI":"10.1007\/978-3-030-86993-9_16","volume-title":"Brain Informatics","author":"G Bekmanova","year":"2021","unstructured":"Bekmanova, G., Yergesh, B., Sharipbay, A.: Sentiment analysis model based on the word structural representation. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 170\u2013178. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86993-9_16"},{"key":"15_CR4","doi-asserted-by":"publisher","unstructured":"Bekmanova, G., Yergesh, B., Sharipbay, A., Mukanova, A.: Emotional speech recognition method based on word transcription. Sensors 22(5) (2022). https:\/\/doi.org\/10.3390\/s22051937","DOI":"10.3390\/s22051937"},{"key":"15_CR5","doi-asserted-by":"publisher","unstructured":"Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis on the hotel reviews in the Kazakh language. In: Paper Presented at the 2nd International Conference on Computer Science and Engineering, UBMK 2017, pp. 790\u2013794 (2017). https:\/\/doi.org\/10.1109\/UBMK.2017.8093531","DOI":"10.1109\/UBMK.2017.8093531"},{"key":"15_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"669","DOI":"10.1007\/978-3-319-62398-6_47","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2017","author":"B Yergesh","year":"2017","unstructured":"Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M.: Ontology-based sentiment analysis of Kazakh sentences. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 669\u2013677. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-62398-6_47"},{"key":"15_CR7","unstructured":"Zhetkenbay, L., Sharipbay, A., Bekmanova, G., Kamanur, U.: Ontological modeling of morphological rules for the adjectives in Kazakh and Turkish languages. J. Theor. Appl. Inf. Technol. 91(2), 257\u2013263 (2016)"},{"key":"15_CR8","unstructured":"Bekmanova, G., et al.: A uniform morphological analyzer for the Kazakh and Turkish languages. In: Paper Presented at the CEUR Workshop Proceedings, pp. 20\u201330 (2017)"},{"issue":"12","key":"15_CR9","first-page":"80","volume":"3","author":"BN Raxmatovna","year":"2022","unstructured":"Raxmatovna, B.N.: Specific features of political speech. Central Asian J. Lit. Philos. Cult. 3(12), 80\u201387 (2022)","journal-title":"Central Asian J. Lit. Philos. Cult."},{"key":"15_CR10","doi-asserted-by":"crossref","unstructured":"Tameryan, T.Yu., et al.: Political media communication: bilingual strategies in the pre-election campaign speeches. Online J. Commun. Media Technol. 9(4), e201921 (2019)","DOI":"10.29333\/ojcmt\/5869"},{"key":"15_CR11","doi-asserted-by":"crossref","unstructured":"Al Maani, B., et al.: The positive-self and negative-other representation in Bashar Al-Assad\u2019s first political speech after the Syrian uprising. Theory Pract. Lang. Stud. 12(10), 2201\u20132210 (2022)","DOI":"10.17507\/tpls.1210.28"},{"key":"15_CR12","first-page":"92","volume":"9","author":"UD Sotvoldiyevna","year":"2022","unstructured":"Sotvoldiyevna, U.D.: Political Euphemisms in English and Uzbek languages (A comparative analysis). Eurasian J. Learn. Acad. Teach. 9, 92\u201396 (2022)","journal-title":"Eurasian J. Learn. Acad. Teach."},{"issue":"5","key":"15_CR13","first-page":"2454","volume":"7","author":"P Dave","year":"2022","unstructured":"Dave, P.: Analysis of the political power speeches of Jr. Martin Luther King and Barrack Obama: in the light of critical discourse analysis as a literary research method. Vidhyayana-Int. Multi. Peer-Rev. E-Journal-ISSN 7(5), 2454\u20138596 (2022)","journal-title":"Vidhyayana-Int. Multi. Peer-Rev. E-Journal-ISSN"},{"key":"15_CR14","doi-asserted-by":"crossref","unstructured":"Abdurashetona, A.M., Ismailovich, I.O.: Methods of tagging part of speech of Uzbek language. In: 2021 6th International Conference on Computer Science and Engineering (UBMK). IEEE (2021)","DOI":"10.1109\/UBMK52708.2021.9558900"},{"key":"15_CR15","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1007\/978-3-030-36599-8_2","volume-title":"Metadata and Semantic Research","author":"M Fiorelli","year":"2019","unstructured":"Fiorelli, M., et al.: Metadata-driven semantic coordination. In: Garoufallou, E., Fallucchi, F., William De Luca, E. (eds.) MTSR 2019. CCIS, vol. 1057, pp. 16\u201327. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-36599-8_2"},{"key":"15_CR16","doi-asserted-by":"publisher","unstructured":"Langer, A.M.: Analysis and Design of Next-Generation Software Architectures. Springer, New York (2020). https:\/\/doi.org\/10.1007\/978-3-030-36899-9","DOI":"10.1007\/978-3-030-36899-9"},{"key":"15_CR17","doi-asserted-by":"publisher","unstructured":"Lai, C.: Fast retrieval algorithm of English sentences based on artificial intelligence machine translation. In: Atiquzzaman, M., Yen, N., Xu, Z. (eds.) 2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City, vol. 102. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-7466-2_117","DOI":"10.1007\/978-981-16-7466-2_117"},{"key":"15_CR18","doi-asserted-by":"crossref","unstructured":"Abdurashetona, A.M., Mokhiyakon, U.: Software features and linguistic features of Uzbek Synonymizer. In: 2022 7th International Conference on Computer Science and Engineering (UBMK). IEEE (2022)","DOI":"10.1109\/UBMK55850.2022.9919447"},{"key":"15_CR19","doi-asserted-by":"publisher","unstructured":"Bekmanova, G., et al.: Linguistic foundations of low-resource languages for speech synthesis on the example of the Kazakh language. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications\u2013ICCSA 2022 Workshops: Malaga, Spain, 4\u20137 July 2022, Proceedings, Part III. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-10545-6_1","DOI":"10.1007\/978-3-031-10545-6_1"},{"issue":"4","key":"15_CR20","first-page":"6","volume":"5","author":"M Ibrahim","year":"2022","unstructured":"Ibrahim, M.: A corpus-based comparative analysis of assertive strategies in Pakistani democratic and dictatorial speeches. J. Appl. Linguist. TESOL 5(4), 6\u201319 (2022)","journal-title":"J. Appl. Linguist. TESOL"},{"key":"15_CR21","doi-asserted-by":"crossref","unstructured":"Mohammed, T.A.S., Banda, F., Patel, M.: The Topoi of Mandela\u2019s death in the Arabic speaking media: a corpus-based political discourse analysis (2022)","DOI":"10.3389\/fcomm.2022.849748"},{"issue":"1","key":"15_CR22","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1075\/cld.21001.liu","volume":"13","author":"M Liu","year":"2022","unstructured":"Liu, M.: Stancetaking in Hong Kong political discourse: a corpus-assisted discourse study. Chin. Lang. Discourse 13(1), 79\u201398 (2022)","journal-title":"Chin. Lang. Discourse"},{"key":"15_CR23","doi-asserted-by":"crossref","unstructured":"Afzaal, M.: \u201cReview of Literature.\u201d A Corpus-Based Analysis of Discourses on the Belt and Road Initiative: Corpora and the Belt and Road Initiative, pp. 17\u201337. Springer, Singapore (2023)","DOI":"10.1007\/978-981-19-9619-1_2"},{"issue":"2","key":"15_CR24","doi-asserted-by":"publisher","first-page":"35","DOI":"10.21595\/marc.2022.22798","volume":"2","author":"S Anand","year":"2022","unstructured":"Anand, S., Keefer, R.: From description to code: a method to predict maintenance codes from maintainer descriptions. Maintenance Reliab. Condition Monit. 2(2), 35\u201344 (2022)","journal-title":"Maintenance Reliab. Condition Monit."},{"key":"15_CR25","unstructured":"Ma, Y., et al.: An end-to-end dialogue state tracking system with machine reading comprehension and wide & deep classification. arXiv preprint arXiv:1912.09297 (2019)"},{"key":"15_CR26","doi-asserted-by":"crossref","unstructured":"Saravanan, S., Sudha, K.: GPT-3 powered system for content generation and transformation. In: 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT). IEEE (2022)","DOI":"10.1109\/CCiCT56684.2022.00096"},{"key":"15_CR27","unstructured":"Dmytriv, A., et al.: Comparative analysis of using different parts of speech in the Ukrainian texts based on stylistic approach. In: CEUR Workshop Proceedings, vol. 3171 (2022)"},{"key":"15_CR28","doi-asserted-by":"publisher","unstructured":"Tretyakov, E., et al.: Sentiment analysis of social networks messages. In: Klimov, V.V., Kelley, D.J. (eds.) Biologically Inspired Cognitive Architectures 2021: Proceedings of the 12th Annual Meeting of the BICA Society. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-96993-6_61","DOI":"10.1007\/978-3-030-96993-6_61"},{"issue":"6","key":"15_CR29","first-page":"4309","volume":"17","author":"S Goswami","year":"2020","unstructured":"Goswami, S., Hudnurkar, M., Ambekar, S.: Fake news and hate speech detection with machine learning and NLP. PalArch\u2019s J. Archaeol. Egypt\/Egyptol. 17(6), 4309\u20134322 (2020)","journal-title":"PalArch\u2019s J. Archaeol. Egypt\/Egyptol."},{"key":"15_CR30","doi-asserted-by":"crossref","unstructured":"Lee, E., et al.: Racism detection by analyzing differential opinions through sentiment analysis of tweets using stacked ensemble GCR-NN model. IEEE Access 10, 9717\u20139728 (2022)","DOI":"10.1109\/ACCESS.2022.3144266"},{"issue":"23","key":"15_CR31","doi-asserted-by":"publisher","first-page":"8614","DOI":"10.3390\/app10238614","volume":"10","author":"R Alshalan","year":"2020","unstructured":"Alshalan, R., Al-Khalifa, H.: A deep learning approach for automatic hate speech detection in the Saudi Twittersphere. Appl. Sci. 10(23), 8614 (2020)","journal-title":"Appl. Sci."},{"key":"15_CR32","doi-asserted-by":"crossref","unstructured":"Chu, K.E., Keikhosrokiani, P., Asl, M.P.: A topic modeling and sentiment analysis model for detection and visualization of themes in literary texts. Pertanika J. Sci. Technol. 30(4), 2535\u20132561 (2022)","DOI":"10.47836\/pjst.30.4.14"},{"key":"15_CR33","doi-asserted-by":"crossref","unstructured":"Babu, N.V., Kanaga, E.G.M.: Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Comput. Sci. 3, 1\u201320 (2022)","DOI":"10.1007\/s42979-021-00958-1"},{"issue":"7","key":"15_CR34","doi-asserted-by":"publisher","first-page":"34","DOI":"10.3390\/mti5070034","volume":"5","author":"K Perifanos","year":"2021","unstructured":"Perifanos, K., Goutsos, D.: Multimodal hate speech detection in Greek social media. Multimodal Technol. Interact. 5(7), 34 (2021)","journal-title":"Multimodal Technol. Interact."},{"key":"15_CR35","doi-asserted-by":"crossref","unstructured":"Aljarah, I., et al.: Intelligent detection of hate speech in Arabic social network: a machine learning approach. J. Inf. Sci. 47(4), 483\u2013501 (2021)","DOI":"10.1177\/0165551520917651"},{"key":"15_CR36","doi-asserted-by":"publisher","unstructured":"Koltsova, O., et al.: PolSentiLex: sentiment detection in socio-political discussions on Russian social media. In: Filchenkov, A., Kauttonen, J., Pivovarova, L. (eds.) Artificial Intelligence and Natural Language: 9th Conference, AINL 2020, Helsinki, Finland, 7\u20139 October 2020, Proceedings. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59082-6_1","DOI":"10.1007\/978-3-030-59082-6_1"},{"key":"15_CR37","doi-asserted-by":"crossref","unstructured":"Mahmud, Md.A.I., et al.: Toward news authenticity: synthesizing natural language processing and human expert opinion to evaluate news. IEEE Access 11, 11405\u201311421 (2023)","DOI":"10.1109\/ACCESS.2023.3241483"},{"key":"15_CR38","unstructured":"Widodo, D.A., Iksan, N., Sunarko, B.: Sentiment analysis of Twitter media for public reaction identification on COVID-19 monitoring system using hybrid feature extraction method. Int. J. Intell. Syst. Appl. Eng. 11(1), 92\u201399 (2023)"},{"key":"15_CR39","doi-asserted-by":"crossref","unstructured":"Holt, K., Ustad Figenschou, T., Frischlich, L.: Key dimensions of alternative news media. Digital Journalism 7(7), 860\u2013869 (2019). High-Choice Information Environments, vol. 25","DOI":"10.1080\/21670811.2019.1625715"},{"key":"15_CR40","doi-asserted-by":"crossref","unstructured":"Chang, W.-L., Tseng, H.-C.: The impact of sentiment on content post popularity through emoji and text on social platforms. In: Cyber Influence and Cognitive Threats, pp. 159\u2013184. Academic Press (2020)","DOI":"10.1016\/B978-0-12-819204-7.00009-9"},{"key":"15_CR41","doi-asserted-by":"crossref","unstructured":"Dang, C.N., Moreno-Garc\u00eda, M.N., De la Prieta, F.: An approach to integrating sentiment analysis into recommender systems. Sensors 21(16), 5666 (2021)","DOI":"10.3390\/s21165666"},{"key":"15_CR42","unstructured":"Wu, C., et al.: SentiRec: sentiment diversity-aware neural news recommendation. In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing (2020)"},{"key":"15_CR43","doi-asserted-by":"crossref","unstructured":"Rozado, D., Al-Gharbi, M., Halberstadt, J.: Prevalence of prejudice-denoting words in news media discourse: a chronological analysis. Soc. Sci. Comput. Rev. 08944393211031452 (2021)","DOI":"10.1177\/08944393211031452"},{"key":"15_CR44","doi-asserted-by":"crossref","unstructured":"Oladele, T.M., Ayetiran, E.F.: Social unrest prediction through sentiment analysis on Twitter using support vector machine: experimental study on Nigeria\u2019s# EndSARS. Open Inf. Sci. 7(1), 20220141 (2023)","DOI":"10.1515\/opis-2022-0141"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2023 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-37117-2_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,28]],"date-time":"2023-06-28T23:34:03Z","timestamp":1687995243000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-37117-2_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031371165","9783031371172"],"references-count":44,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-37117-2_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"29 June 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Athens","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Custom based on Cyberchair 4","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"283","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"PHD Showcase Papers: 6(for main conf) \/ For ICCSA 2023 Workshops 876 subm sent, 350 full papers and 29 short papers accepted, additional PHD Showcase Papers: 2","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}