{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T04:23:36Z","timestamp":1726201416898},"publisher-location":"Cham","reference-count":48,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031349591"},{"type":"electronic","value":"9783031349607"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-34960-7_15","type":"book-chapter","created":{"date-parts":[[2023,6,28]],"date-time":"2023-06-28T15:04:08Z","timestamp":1687964648000},"page":"208-221","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Predicting Papillary Renal Cell Carcinoma Prognosis Using Integrative Analysis of Histopathological Images and Genomic Data"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4330-4595","authenticated-orcid":false,"given":"Shaira L.","family":"Kee","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9281-7592","authenticated-orcid":false,"given":"Michael Aaron G.","family":"Sy","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8806-6965","authenticated-orcid":false,"given":"Samuel P.","family":"Border","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5454-7074","authenticated-orcid":false,"given":"Nicholas J.","family":"Lucarelli","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0002-7440-5003","authenticated-orcid":false,"given":"Akshita","family":"Gupta","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2450-5233","authenticated-orcid":false,"given":"Pinaki","family":"Sarder","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7718-1300","authenticated-orcid":false,"given":"Marvin C.","family":"Masalunga","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1426-6526","authenticated-orcid":false,"given":"Myles Joshua T.","family":"Tan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,29]]},"reference":[{"issue":"1","key":"15_CR1","doi-asserted-by":"publisher","first-page":"7","DOI":"10.3322\/caac.21590","volume":"70","author":"RL Siegel","year":"2020","unstructured":"Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2020. CA. Cancer J. Clin. 70(1), 7\u201330 (2020). https:\/\/doi.org\/10.3322\/caac.21590","journal-title":"CA. Cancer J. Clin."},{"issue":"21","key":"15_CR2","doi-asserted-by":"publisher","first-page":"e91","DOI":"10.1158\/0008-5472.CAN-17-0313","volume":"77","author":"J Cheng","year":"2017","unstructured":"Cheng, J., et al.: Integrative analysis of histopathological images and genomic data predicts clear cell renal cell carcinoma prognosis. Cancer Res. 77(21), e91\u2013e100 (2017). https:\/\/doi.org\/10.1158\/0008-5472.CAN-17-0313","journal-title":"Cancer Res."},{"issue":"4","key":"15_CR3","doi-asserted-by":"publisher","first-page":"478","DOI":"10.1016\/j.eururo.2021.01.023","volume":"79","author":"P Filippou","year":"2021","unstructured":"Filippou, P., Shuch, B., Psutka, S.P.: Advances in the characterization of clear cell papillary renal cell carcinoma: identifying the sheep in wolf\u2019s clothing. Eur. Urol. 79(4), 478\u2013479 (2021). https:\/\/doi.org\/10.1016\/j.eururo.2021.01.023","journal-title":"Eur. Urol."},{"key":"15_CR4","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1016\/j.humpath.2019.05.011","volume":"91","author":"DM Morlote","year":"2019","unstructured":"Morlote, D.M., Harada, S., Batista, D., Gordetsky, J., Rais-Bahrami, S.: Clear cell papillary renal cell carcinoma: molecular profile and virtual karyotype. Hum. Pathol. 91, 52\u201360 (2019). https:\/\/doi.org\/10.1016\/j.humpath.2019.05.011","journal-title":"Hum. Pathol."},{"issue":"1","key":"15_CR5","doi-asserted-by":"publisher","first-page":"151","DOI":"10.3390\/ijms23010151","volume":"23","author":"J Rysz","year":"2021","unstructured":"Rysz, J., Franczyk, B., \u0141awi\u0144ski, J., Gluba-Brz\u00f3zka, A.: Characteristics of clear cell papillary Renal Cell Carcinoma (ccpRCC). Int. J. Mol. Sci. 23(1), 151 (2021). https:\/\/doi.org\/10.3390\/ijms23010151","journal-title":"Int. J. Mol. Sci."},{"issue":"1","key":"15_CR6","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.eururo.2014.04.029","volume":"67","author":"B Shuch","year":"2015","unstructured":"Shuch, B., et al.: Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur. Urol. 67(1), 85\u201397 (2015). https:\/\/doi.org\/10.1016\/j.eururo.2014.04.029","journal-title":"Eur. Urol."},{"issue":"2","key":"15_CR7","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1002\/(SICI)1096-9896(199710)183:2<131::AID-PATH931>3.0.CO;2-G","volume":"183","author":"G Kovacs","year":"1997","unstructured":"Kovacs, G., et al.: The heidelberg classification of renal cell tumours. J. Pathol. 183(2), 131\u2013133 (1997). https:\/\/doi.org\/10.1002\/(SICI)1096-9896(199710)183:2%3c131::AID-PATH931%3e3.0.CO;2-G","journal-title":"J. Pathol."},{"issue":"2","key":"15_CR8","doi-asserted-by":"publisher","first-page":"124","DOI":"10.1097\/PAP.0000000000000220","volume":"26","author":"M Akhtar","year":"2019","unstructured":"Akhtar, M., Al-Bozom, I.A., Al Hussain, T.: Papillary Renal Cell Carcinoma (PRCC): an update. Adv. Anat. Pathol. 26(2), 124\u2013132 (2019). https:\/\/doi.org\/10.1097\/PAP.0000000000000220","journal-title":"Adv. Anat. Pathol."},{"issue":"6","key":"15_CR9","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1016\/j.urolonc.2021.04.013","volume":"39","author":"N Mendhiratta","year":"2021","unstructured":"Mendhiratta, N., Muraki, P., Sisk, A.E., Shuch, B.: Papillary renal cell carcinoma: review. Urol. Oncol. Semin. Orig. Investig. 39(6), 327\u2013337 (2021). https:\/\/doi.org\/10.1016\/j.urolonc.2021.04.013","journal-title":"Urol. Oncol. Semin. Orig. Investig."},{"issue":"2","key":"15_CR10","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1097\/PAP.0000000000000139","volume":"24","author":"I Clark","year":"2017","unstructured":"Clark, I., Torbenson, M.S.: Immunohistochemistry and special stains in medical liver pathology. Adv. Anat. Pathol. 24(2), 99\u2013109 (2017). https:\/\/doi.org\/10.1097\/PAP.0000000000000139","journal-title":"Adv. Anat. Pathol."},{"issue":"4","key":"15_CR11","doi-asserted-by":"publisher","first-page":"991","DOI":"10.1109\/JPROC.2011.2182074","volume":"100","author":"LA Cooper","year":"2012","unstructured":"Cooper, L.A., et al.: Digital pathology: data-intensive frontier in medical imaging. Proc. IEEE Inst. Electr. Electron. Eng. 100(4), 991\u20131003 (2012). https:\/\/doi.org\/10.1109\/JPROC.2011.2182074","journal-title":"Proc. IEEE Inst. Electr. Electron. Eng."},{"issue":"108","key":"15_CR12","doi-asserted-by":"publisher","first-page":"108ra113","DOI":"10.1126\/scitranslmed.3002564","volume":"3","author":"AH Beck","year":"2011","unstructured":"Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3(108), 108ra113 (2011). https:\/\/doi.org\/10.1126\/scitranslmed.3002564","journal-title":"Sci. Transl. Med."},{"issue":"1","key":"15_CR13","doi-asserted-by":"publisher","first-page":"275","DOI":"10.1109\/TMI.2014.2354373","volume":"34","author":"T Gultekin","year":"2015","unstructured":"Gultekin, T., Koyuncu, C.F., Sokmensuer, C., Gunduz-Demir, C.: Two-tier tissue decomposition for histopathological image representation and classification. IEEE Trans. Med. Imaging 34(1), 275\u2013283 (2015). https:\/\/doi.org\/10.1109\/TMI.2014.2354373","journal-title":"IEEE Trans. Med. Imaging"},{"key":"15_CR14","doi-asserted-by":"publisher","first-page":"12474","DOI":"10.1038\/ncomms12474","volume":"7","author":"K-H Yu","year":"2016","unstructured":"Yu, K.-H., et al.: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016). https:\/\/doi.org\/10.1038\/ncomms12474","journal-title":"Nat. Commun."},{"issue":"5","key":"15_CR15","doi-asserted-by":"publisher","first-page":"646","DOI":"10.1016\/j.cell.2011.02.013","volume":"144","author":"D Hanahan","year":"2011","unstructured":"Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646\u2013674 (2011). https:\/\/doi.org\/10.1016\/j.cell.2011.02.013","journal-title":"Cell"},{"key":"15_CR16","doi-asserted-by":"publisher","unstructured":"Al-Lahham, H.Z., Alomari, R.S., Hiary, H., Chaudhary, V.: Automating proliferation rate estimation from Ki-67 histology images. In: Medical Imaging, 2012 Computer-Aided Diagnosis SPIE, pp. 669\u2013675 (2012).https:\/\/doi.org\/10.1117\/12.911009","DOI":"10.1117\/12.911009"},{"issue":"6","key":"15_CR17","doi-asserted-by":"publisher","first-page":"707","DOI":"10.1586\/14737159.8.6.707","volume":"8","author":"L Mulrane","year":"2008","unstructured":"Mulrane, L., Rexhepaj, E., Penney, S., Callanan, J.J., Gallagher, W.M.: Automated image analysis in histopathology: a valuable tool in medical diagnostics. Expert Rev. Mol. Diagn. 8(6), 707\u2013725 (2008). https:\/\/doi.org\/10.1586\/14737159.8.6.707","journal-title":"Expert Rev. Mol. Diagn."},{"issue":"4","key":"15_CR18","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1002\/path.971","volume":"195","author":"JM Bartlett","year":"2001","unstructured":"Bartlett, J.M., et al.: Evaluating HER2 amplification and overexpression in breast cancer. J. Pathol. 195(4), 422\u2013428 (2001). https:\/\/doi.org\/10.1002\/path.971","journal-title":"J. Pathol."},{"issue":"5","key":"15_CR19","doi-asserted-by":"publisher","first-page":"936","DOI":"10.1016\/j.eururo.2014.06.053","volume":"66","author":"S Gulati","year":"2014","unstructured":"Gulati, S., et al.: Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. Eur. Urol. 66(5), 936\u2013948 (2014). https:\/\/doi.org\/10.1016\/j.eururo.2014.06.053","journal-title":"Eur. Urol."},{"issue":"8","key":"15_CR20","doi-asserted-by":"publisher","first-page":"2060","DOI":"10.1158\/1078-0432.CCR-13-1351","volume":"20","author":"P Maroto","year":"2014","unstructured":"Maroto, P., Rini, B.: Molecular biomarkers in advanced renal cell carcinoma. Clin. Cancer Res. 20(8), 2060\u20132071 (2014). https:\/\/doi.org\/10.1158\/1078-0432.CCR-13-1351","journal-title":"Clin. Cancer Res."},{"issue":"12","key":"15_CR21","doi-asserted-by":"publisher","first-page":"e28210","DOI":"10.1371\/journal.pone.0028210","volume":"6","author":"A-C Haury","year":"2011","unstructured":"Haury, A.-C., Gestraud, P., Vert, J.-P.: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS ONE 6(12), e28210 (2011). https:\/\/doi.org\/10.1371\/journal.pone.0028210","journal-title":"PLoS ONE"},{"key":"15_CR22","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1186\/1755-8794-5-44","volume":"5","author":"RR Bastien","year":"2012","unstructured":"Bastien, R.R., et al.: PAM50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers. BMC Med. Genomics 5, 44 (2012). https:\/\/doi.org\/10.1186\/1755-8794-5-44","journal-title":"BMC Med. Genomics"},{"issue":"12","key":"15_CR23","doi-asserted-by":"publisher","first-page":"2069","DOI":"10.1007\/s00018-010-0340-8","volume":"67","author":"S He","year":"2010","unstructured":"He, S., et al.: Aurora kinase A induces miR-17-92 cluster through regulation of E2F1 transcription factor. Cell. Mol. Life Sci. CMLS 67(12), 2069\u20132076 (2010). https:\/\/doi.org\/10.1007\/s00018-010-0340-8","journal-title":"Cell. Mol. Life Sci. CMLS"},{"issue":"157","key":"15_CR24","doi-asserted-by":"publisher","first-page":"157ra143","DOI":"10.1126\/scitranslmed.3004330","volume":"4","author":"Y Yuan","year":"2012","unstructured":"Yuan, Y., et al.: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4(157), 157ra143 (2012). https:\/\/doi.org\/10.1126\/scitranslmed.3004330","journal-title":"Sci. Transl. Med."},{"issue":"1","key":"15_CR25","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/s10549-008-0105-3","volume":"116","author":"A Calabr\u00f2","year":"2009","unstructured":"Calabr\u00f2, A., et al.: Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res. Treat. 116(1), 69\u201377 (2009). https:\/\/doi.org\/10.1007\/s10549-008-0105-3","journal-title":"Breast Cancer Res. Treat."},{"issue":"4","key":"15_CR26","doi-asserted-by":"publisher","first-page":"903","DOI":"10.1016\/j.ajhg.2008.01.012","volume":"82","author":"G Assi\u00e9","year":"2008","unstructured":"Assi\u00e9, G., LaFramboise, T., Platzer, P., Bertherat, J., Stratakis, C.A., Eng, C.: SNP arrays in heterogeneous tissue: highly accurate collection of both germline and somatic genetic information from unpaired single tumor samples. Am. J. Hum. Genet. 82(4), 903\u2013915 (2008). https:\/\/doi.org\/10.1016\/j.ajhg.2008.01.012","journal-title":"Am. J. Hum. Genet."},{"key":"15_CR27","doi-asserted-by":"publisher","unstructured":"Neuvial, P., Bengtsson, H., Speed, T.P.: Statistical analysis of single nucleotide polymorphism microarrays in cancer studies. In: Lu, H.H.-S., Sch\u00f6lkopf, B., Zhao, H. (eds.) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics, pp. 225\u2013255. Springer, Berlin, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-16345-6_11","DOI":"10.1007\/978-3-642-16345-6_11"},{"key":"15_CR28","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1186\/s13059-015-0675-4","volume":"16","author":"E-Y Oh","year":"2015","unstructured":"Oh, E.-Y., et al.: Extensive rewiring of epithelial-stromal co-expression networks in breast cancer. Genome Biol. 16, 128 (2015). https:\/\/doi.org\/10.1186\/s13059-015-0675-4","journal-title":"Genome Biol."},{"key":"15_CR29","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1186\/1752-0509-1-54","volume":"1","author":"P Langfelder","year":"2007","unstructured":"Langfelder, P., Horvath, S.: Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007). https:\/\/doi.org\/10.1186\/1752-0509-1-54","journal-title":"BMC Syst. Biol."},{"key":"15_CR30","doi-asserted-by":"publisher","first-page":"703","DOI":"10.2147\/NDT.S244452","volume":"16","author":"G Zhang","year":"2020","unstructured":"Zhang, G., Xu, S., Yuan, Z., Shen, L.:

Weighted gene coexpression network analysis identifies specific modules and hub genes related to major depression<\/p>. Neuropsychiatr. Dis. Treat. 16, 703\u2013713 (2020). https:\/\/doi.org\/10.2147\/NDT.S244452","journal-title":"Neuropsychiatr. Dis. Treat."},{"issue":"5","key":"15_CR31","doi-asserted-by":"publisher","first-page":"556","DOI":"10.1016\/j.tranon.2014.07.007","volume":"7","author":"R Colen","year":"2014","unstructured":"Colen, R., et al.: NCI workshop report: clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl. Oncol. 7(5), 556\u2013569 (2014). https:\/\/doi.org\/10.1016\/j.tranon.2014.07.007","journal-title":"Transl. Oncol."},{"issue":"12","key":"15_CR32","doi-asserted-by":"publisher","first-page":"526","DOI":"10.1186\/s13059-014-0526-8","volume":"15","author":"FC Martins","year":"2014","unstructured":"Martins, F.C., et al.: Combined image and genomic analysis of high-grade serous ovarian cancer reveals PTEN loss as a common driver event and prognostic classifier. Genome Biol. 15(12), 526 (2014). https:\/\/doi.org\/10.1186\/s13059-014-0526-8","journal-title":"Genome Biol."},{"issue":"11","key":"15_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v050.i11","volume":"50","author":"UB Mogensen","year":"2012","unstructured":"Mogensen, U.B., Ishwaran, H., Gerds, T.A.: Evaluating random forests for survival analysis using prediction error curves. J. Stat. Softw. 50(11), 1\u201323 (2012). https:\/\/doi.org\/10.18637\/jss.v050.i11","journal-title":"J. Stat. Softw."},{"key":"15_CR34","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1186\/s12874-021-01375-x","volume":"21","author":"KL Pickett","year":"2021","unstructured":"Pickett, K.L., Suresh, K., Campbell, K.R., Davis, S., Juarez-Colunga, E.: Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker. BMC Med. Res. Methodol. 21, 216 (2021). https:\/\/doi.org\/10.1186\/s12874-021-01375-x","journal-title":"BMC Med. Res. Methodol."},{"issue":"1A","key":"15_CR35","doi-asserted-by":"publisher","first-page":"A68","DOI":"10.5114\/wo.2014.47136","volume":"19","author":"K Tomczak","year":"2015","unstructured":"Tomczak, K., Czerwi\u0144ska, P., Wiznerowicz, M.: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. Poznan Pol. 19(1A), A68-77 (2015). https:\/\/doi.org\/10.5114\/wo.2014.47136","journal-title":"Contemp. Oncol. Poznan Pol."},{"issue":"6","key":"15_CR36","doi-asserted-by":"publisher","first-page":"1091","DOI":"10.1136\/amiajnl-2012-001469","volume":"20","author":"DA Gutman","year":"2013","unstructured":"Gutman, D.A., et al.: Cancer digital slide archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. J. Am. Med. Inform. Assoc. JAMIA 20(6), 1091\u20131098 (2013). https:\/\/doi.org\/10.1136\/amiajnl-2012-001469","journal-title":"J. Am. Med. Inform. Assoc. JAMIA"},{"key":"15_CR37","doi-asserted-by":"publisher","unstructured":"Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, pp. 1107\u20131110. IEEE (2009). https:\/\/doi.org\/10.1109\/ISBI.2009.5193250","DOI":"10.1109\/ISBI.2009.5193250"},{"key":"15_CR38","doi-asserted-by":"publisher","unstructured":"Li, H., Chen, L., Zeng, H., Liao, Q., Ji, J., Ma, X.: Integrative analysis of histopathological images and genomic data in colon adenocarcinoma. Front Oncol 11 (2021). Accessed: Aug. 09, 2022. https:\/\/www.frontiersin.org\/articles\/https:\/\/doi.org\/10.3389\/fonc.2021.636451","DOI":"10.3389\/fonc.2021.636451"},{"issue":"1","key":"15_CR39","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1186\/s12575-015-0023-9","volume":"17","author":"K Soliman","year":"2015","unstructured":"Soliman, K.: CellProfiler: novel automated image segmentation procedure for super-resolution microscopy. Biol. Proced. Online 17(1), 11 (2015). https:\/\/doi.org\/10.1186\/s12575-015-0023-9","journal-title":"Biol. Proced. Online"},{"issue":"3","key":"15_CR40","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1109\/tnb.2005.853657","volume":"4","author":"K-B Duan","year":"2005","unstructured":"Duan, K.-B., Rajapakse, J.C., Wang, H., Azuaje, F.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobioscience 4(3), 228\u2013234 (2005). https:\/\/doi.org\/10.1109\/tnb.2005.853657","journal-title":"IEEE Trans. Nanobioscience"},{"issue":"Suppl 5","key":"15_CR41","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1186\/s12920-020-0686-1","volume":"13","author":"Z Huang","year":"2020","unstructured":"Huang, Z., et al.: Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations. BMC Med. Genomics 13(Suppl 5), 41 (2020). https:\/\/doi.org\/10.1186\/s12920-020-0686-1","journal-title":"BMC Med. Genomics"},{"key":"15_CR42","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1186\/1471-2105-9-559","volume":"9","author":"P Langfelder","year":"2008","unstructured":"Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https:\/\/doi.org\/10.1186\/1471-2105-9-559","journal-title":"BMC Bioinformatics"},{"issue":"9","key":"15_CR43","doi-asserted-by":"publisher","first-page":"4376","DOI":"10.3390\/ijms22094376","volume":"22","author":"M-Y Song","year":"2021","unstructured":"Song, M.-Y., Lee, D.-Y., Chun, K.-S., Kim, E.-H.: The role of NRF2\/KEAP1 signaling pathway in cancer metabolism. Int. J. Mol. Sci. 22(9), 4376 (2021). https:\/\/doi.org\/10.3390\/ijms22094376","journal-title":"Int. J. Mol. Sci."},{"issue":"36","key":"15_CR44","doi-asserted-by":"publisher","first-page":"3540","DOI":"10.1200\/JCO.2018.79.2309","volume":"36","author":"WK Rathmell","year":"2018","unstructured":"Rathmell, W.K., Rathmell, J.C., Linehan, W.M.: Metabolic pathways in kidney cancer: current therapies and future directions. J. Clin. Oncol. 36(36), 3540\u20133546 (2018). https:\/\/doi.org\/10.1200\/JCO.2018.79.2309","journal-title":"J. Clin. Oncol."},{"issue":"27","key":"15_CR45","doi-asserted-by":"publisher","first-page":"3247","DOI":"10.2174\/0929867325666180226111311","volume":"25","author":"ECC Mano","year":"2018","unstructured":"Mano, E.C.C., Scott, A.L., Honorio, K.M.: UDP-glucuronosyltransferases: structure, function and drug design studies. Curr. Med. Chem. 25(27), 3247\u20133255 (2018). https:\/\/doi.org\/10.2174\/0929867325666180226111311","journal-title":"Curr. Med. Chem."},{"issue":"9","key":"15_CR46","doi-asserted-by":"publisher","first-page":"1277","DOI":"10.1038\/s41416-019-0722-0","volume":"122","author":"EP Allain","year":"2020","unstructured":"Allain, E.P., Rouleau, M., L\u00e9vesque, E., Guillemette, C.: Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br. J. Cancer 122(9), 1277\u20131287 (2020). https:\/\/doi.org\/10.1038\/s41416-019-0722-0","journal-title":"Br. J. Cancer"},{"issue":"9","key":"15_CR47","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1111\/boc.201800019","volume":"110","author":"M Gallazzini","year":"2018","unstructured":"Gallazzini, M., Pallet, N.: Endoplasmic reticulum stress and kidney dysfunction. Biol. Cell 110(9), 205\u2013216 (2018). https:\/\/doi.org\/10.1111\/boc.201800019","journal-title":"Biol. Cell"},{"issue":"11","key":"15_CR48","doi-asserted-by":"publisher","first-page":"681","DOI":"10.1038\/nrneph.2017.129","volume":"13","author":"AV Cybulsky","year":"2017","unstructured":"Cybulsky, A.V.: Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat. Rev. Nephrol. 13(11), 681\u2013696 (2017). https:\/\/doi.org\/10.1038\/nrneph.2017.129","journal-title":"Nat. Rev. Nephrol."}],"container-title":["Lecture Notes in Computer Science","Bioinformatics and Biomedical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-34960-7_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,28]],"date-time":"2023-06-28T15:05:42Z","timestamp":1687964742000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-34960-7_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031349591","9783031349607"],"references-count":48,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-34960-7_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"29 June 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWBBIO","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on Bioinformatics and Biomedical Engineering","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Meloneras, Gran Canaria","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 July 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 July 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwbbio2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iwbbio.ugr.es\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"203","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"79","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}