{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T03:55:02Z","timestamp":1726199702780},"publisher-location":"Cham","reference-count":31,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031346187"},{"type":"electronic","value":"9783031346194"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-34619-4_10","type":"book-chapter","created":{"date-parts":[[2023,6,10]],"date-time":"2023-06-10T19:01:31Z","timestamp":1686423691000},"page":"109-121","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["PreCKD_ML: Machine Learning Based Development of\u00a0Prediction Model for\u00a0Chronic Kidney Disease and\u00a0Identify Significant Risk Factors"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4692-7517","authenticated-orcid":false,"given":"Md. Rajib","family":"Mia","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3673-7392","authenticated-orcid":false,"given":"Md. Ashikur","family":"Rahman","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8125-2995","authenticated-orcid":false,"given":"Md. Mamun","family":"Ali","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4034-9819","authenticated-orcid":false,"given":"Kawsar","family":"Ahmed","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8799-5965","authenticated-orcid":false,"given":"Francis M.","family":"Bui","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6828-3559","authenticated-orcid":false,"given":"S M Hasan","family":"Mahmud","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,11]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Davis, G., Kurse, A., Agarwal, A., Sheikh-Hamad, D., Kumar, M.R.: Nano-encapsulation strategies to circumvent drug-induced kidney injury and targeted nanomedicines to treat kidney diseases. Current Opinion in Toxicology, p. 100346 (2022)","key":"10_CR1","DOI":"10.1016\/j.cotox.2022.100346"},{"doi-asserted-by":"crossref","unstructured":"Revathy, S., Bharathi, B., Jeyanthi, P., Ramesh, M.: Chronic kidney disease prediction using machine learning models. Int. J. Eng. Adv. Technol. (IJEAT), 9 (2019)","key":"10_CR2","DOI":"10.35940\/ijeat.A2213.109119"},{"doi-asserted-by":"crossref","unstructured":"Yashfi, S.Y., Islam, M.A., Sakib, N., Islam, T., Shahbaaz, M., Pantho, S.S.: Risk prediction of chronic kidney disease using machine learning algorithms. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1\u20135. IEEE (2020)","key":"10_CR3","DOI":"10.1109\/ICCCNT49239.2020.9225548"},{"key":"10_CR4","doi-asserted-by":"publisher","first-page":"20991","DOI":"10.1109\/ACCESS.2019.2963053","volume":"8","author":"J Qin","year":"2019","unstructured":"Qin, J., Chen, L., Liu, Y., Liu, C., Feng, C., Chen, B.: A machine learning methodology for diagnosing chronic kidney disease. IEEE Access 8, 20991\u201321002 (2019)","journal-title":"IEEE Access"},{"key":"10_CR5","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1007\/978-981-13-5953-8_34","volume-title":"Emerging Research in Computing, Information, Communication and Applications","author":"KM Zubair Hasan","year":"2019","unstructured":"Zubair Hasan, K.M., Zahid Hasan, M.: Performance evaluation of ensemble-based machine learning techniques for prediction of chronic kidney disease. In: Shetty, N.R., Patnaik, L.M., Nagaraj, H.C., Hamsavath, P.N., Nalini, N. (eds.) Emerging Research in Computing, Information, Communication and Applications. AISC, vol. 882, pp. 415\u2013426. Springer, Singapore (2019). https:\/\/doi.org\/10.1007\/978-981-13-5953-8_34"},{"doi-asserted-by":"crossref","unstructured":"Celik, E., Atalay, M., Kondiloglu, A.: The diagnosis and estimate of chronic kidney disease using the machine learning methods. Int. J. Intell. Syst. Appl. Eng. 4(Special Issue-1), 27\u201331 (2016)","key":"10_CR6","DOI":"10.18201\/ijisae.265967"},{"doi-asserted-by":"crossref","unstructured":"Krishnamurthy, S., et al.: Machine learning prediction models for chronic kidney disease using national health insurance claim data in Taiwan. In: Healthcare, vol. 9, no. 5, p. 546. Multidisciplinary Digital Publishing Institute (2021)","key":"10_CR7","DOI":"10.3390\/healthcare9050546"},{"key":"10_CR8","doi-asserted-by":"publisher","first-page":"101","DOI":"10.1016\/j.compbiomed.2019.04.017","volume":"109","author":"NA Almansour","year":"2019","unstructured":"Almansour, N.A., et al.: Neural network and support vector machine for the prediction of chronic kidney disease: a comparative study. Comput. Biol. Med. 109, 101\u2013111 (2019)","journal-title":"Comput. Biol. Med."},{"key":"10_CR9","first-page":"72","volume":"3","author":"N Radha","year":"2015","unstructured":"Radha, N., Ramya, S.: Performance analysis of machine learning algorithms for predicting chronic kidney disease. Int. J. Comput. Sci. Eng. Open Access 3, 72\u201376 (2015)","journal-title":"Int. J. Comput. Sci. Eng. Open Access"},{"doi-asserted-by":"crossref","unstructured":"Chiu, R.K., Chen, R.Y., Wang, S.A., Jian, S.J.: Intelligent systems on the cloud for the early detection of chronic kidney disease. In: 2012 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 1737\u20131742. IEEE (2012)","key":"10_CR10","DOI":"10.1109\/ICMLC.2012.6359637"},{"issue":"11","key":"10_CR11","doi-asserted-by":"publisher","first-page":"1963","DOI":"10.3390\/electronics9111963","volume":"9","author":"SA Ebiaredoh-Mienye","year":"2020","unstructured":"Ebiaredoh-Mienye, S.A., Esenogho, E., Swart, T.G.: Integrating enhanced sparse autoencoder-based artificial neural network technique and softmax regression for medical diagnosis. Electronics 9(11), 1963 (2020)","journal-title":"Electronics"},{"unstructured":"Donges, N.: A complete guide to the random forest algorithm. Built In, 16 (2019)","key":"10_CR12"},{"issue":"1","key":"10_CR13","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1007\/BF00116251","volume":"1","author":"JR Quinlan","year":"1986","unstructured":"Quinlan, J.R.: Induction of decision trees. Mach. learn. 1(1), 81\u2013106 (1986). https:\/\/doi.org\/10.1007\/BF00116251","journal-title":"Mach. learn."},{"issue":"4","key":"10_CR14","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1016\/S0167-9473(01)00065-2","volume":"38","author":"JH Friedman","year":"2002","unstructured":"Friedman, J.H.: Stochastic gradient boosting. Comput. Statistics Data Anal. 38(4), 367\u2013378 (2002)","journal-title":"Comput. Statistics Data Anal."},{"unstructured":"Sundaram, R.B.: An end-to-end guide to understand the math behind XGBoost (2018)","key":"10_CR15"},{"key":"10_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1007\/978-3-030-66665-1_11","volume-title":"Big Data Analytics","author":"A Gupta","year":"2020","unstructured":"Gupta, A., Gupta, A., Verma, V., Khattar, A., Sharma, D.: Texture feature extraction: impact of variants on performance of machine learning classifiers: study on chest x-ray \u2013 pneumonia images. In: Bellatreche, L., Goyal, V., Fujita, H., Mondal, A., Reddy, P.K. (eds.) BDA 2020. LNCS, vol. 12581, pp. 151\u2013163. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-66665-1_11"},{"key":"10_CR17","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"735","DOI":"10.1007\/978-981-16-3346-1_59","volume-title":"Proceedings of Second Doctoral Symposium on Computational Intelligence","author":"R Pramanik","year":"2022","unstructured":"Pramanik, R., Khare, S., Gourisaria, M.K.: Inferring the occurrence of chronic kidney failure: a data mining solution. In: Gupta, D., Khanna, A., Kansal, V., Fortino, G., Hassanien, A.E. (eds.) Proceedings of Second Doctoral Symposium on Computational Intelligence. AISC, vol. 1374, pp. 735\u2013748. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-3346-1_59"},{"key":"10_CR18","doi-asserted-by":"publisher","first-page":"104985","DOI":"10.1016\/j.compbiomed.2021.104985","volume":"139","author":"MM Ali","year":"2021","unstructured":"Ali, M.M.: Machine learning-based statistical analysis for early stage detection of cervical cancer. Comput. Biol. Med. 139, 104985 (2021)","journal-title":"Comput. Biol. Med."},{"doi-asserted-by":"crossref","unstructured":"Haitaamar, Z.N., Abdulaziz, N.: Detection and semantic segmentation of rib fractures using a convolutional neural network approach. In: 2021 IEEE Region 10 Symposium (TENSYMP), pp. 1\u20134. IEEE (2021)","key":"10_CR19","DOI":"10.1109\/TENSYMP52854.2021.9550883"},{"doi-asserted-by":"crossref","unstructured":"Shah, A., Rathod, D., Dave, D.: DDoS attack detection using artificial neural network. In: International Conference on Computing Science, Communication and Security, pp. 46\u201366. Springer, Cham (2021)","key":"10_CR20","DOI":"10.1007\/978-3-030-76776-1_4"},{"issue":"5","key":"10_CR21","doi-asserted-by":"publisher","first-page":"291","DOI":"10.3390\/ijgi9050291","volume":"9","author":"M Piech","year":"2020","unstructured":"Piech, M., Smywinski-Pohl, A., Marcjan, R., Siwik, L.: Towards automatic points of interest matching. ISPRS Int. J. Geo Inf. 9(5), 291 (2020)","journal-title":"ISPRS Int. J. Geo Inf."},{"unstructured":"Nelson, D.: Gradient boosting classifiers in python with scikit-learn. Retrieved from Stack Abuse. https:\/\/stackabuse.com\/gradientboosting-classifiers-in-python-with-scikit-learn (2019)","key":"10_CR22"},{"unstructured":"Chen, T., He, T., Benesty, M. and Khotilovich, V.: Package \u2018xgboost\u2019. R version, 90 (2019)","key":"10_CR23"},{"doi-asserted-by":"crossref","unstructured":"Abdurrahman, M.H., Irawan, B., Setianingsih, C.: A review of light gradient boosting machine method for hate speech classification on twitter. In: 2020 2nd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), pp. 1\u20136. IEEE (2020)","key":"10_CR24","DOI":"10.1109\/ICECIE50279.2020.9309565"},{"doi-asserted-by":"crossref","unstructured":"Lazich, I., Bakris, G.L.: Prediction and management of hyperkalemia across the spectrum of chronic kidney disease. In: Seminars in nephrology, vol. 34, no. 3, pp. 333\u2013339. WB Saunders (2014)","key":"10_CR25","DOI":"10.1016\/j.semnephrol.2014.04.008"},{"doi-asserted-by":"crossref","unstructured":"Rabby, A.S.A., Mamata, R., Laboni, M.A., Abujar, S.: Machine learning applied to kidney disease prediction: Comparison study. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1\u20137. IEEE (2019)","key":"10_CR26","DOI":"10.1109\/ICCCNT45670.2019.8944799"},{"issue":"1","key":"10_CR27","doi-asserted-by":"publisher","first-page":"146","DOI":"10.1038\/ki.2015.71","volume":"88","author":"H Bhutani","year":"2015","unstructured":"Bhutani, H., et al.: A comparison of ultrasound and magnetic resonance imaging shows that kidney length predicts chronic kidney disease in autosomal dominant polycystic kidney disease. Kidney Int. 88(1), 146\u2013151 (2015)","journal-title":"Kidney Int."},{"issue":"1","key":"10_CR28","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-019-46074-2","volume":"9","author":"M Elhoseny","year":"2019","unstructured":"Elhoseny, M., Shankar, K., Uthayakumar, J.: Intelligent diagnostic prediction and classification system for chronic kidney disease. Sci. Rep. 9(1), 1\u201314 (2019)","journal-title":"Sci. Rep."},{"issue":"6","key":"10_CR29","doi-asserted-by":"publisher","first-page":"1442","DOI":"10.1016\/j.kint.2018.01.009","volume":"93","author":"ME Grams","year":"2018","unstructured":"Grams, M.E.: Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate. Kidney Int. 93(6), 1442\u20131451 (2018)","journal-title":"Kidney Int."},{"doi-asserted-by":"crossref","unstructured":"Merzkani, M.A., et al.: Kidney microstructural features at the time of donation predict long-term risk of chronic kidney disease in living kidney donors. In: Mayo Clinic Proceedings, vol. 96, no. 1, pp. 40\u201351. Elsevier (2021)","key":"10_CR30","DOI":"10.1016\/j.mayocp.2020.08.041"},{"doi-asserted-by":"crossref","unstructured":"Farrington, K., et al.: Clinical Practice Guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR$$<$$ 45 mL\/min\/1.73 m2): a summary document from the European Renal Best Practice Group. Nephrology Dialysis Transplantation, 32(1), 9\u201316 (2017)","key":"10_CR31","DOI":"10.1093\/ndt\/gfw411"}],"container-title":["Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","Machine Intelligence and Emerging Technologies"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-34619-4_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,10]],"date-time":"2023-06-10T19:05:43Z","timestamp":1686423943000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-34619-4_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031346187","9783031346194"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-34619-4_10","relation":{},"ISSN":["1867-8211","1867-822X"],"issn-type":[{"type":"print","value":"1867-8211"},{"type":"electronic","value":"1867-822X"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"11 June 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MIET","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Machine Intelligence and Emerging Technologies","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Noakhali","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bangladesh","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miet2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/confmiet.org","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Confy plus","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"272","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"104","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}