{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:42:04Z","timestamp":1742913724074,"version":"3.40.3"},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031343438"},{"type":"electronic","value":"9783031343445"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-34344-5_22","type":"book-chapter","created":{"date-parts":[[2023,6,4]],"date-time":"2023-06-04T23:03:59Z","timestamp":1685919839000},"page":"183-192","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["GGTWEAK: Gene Tagging with\u00a0Weak Supervision for\u00a0German Clinical Text"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3142-8045","authenticated-orcid":false,"given":"Sandro","family":"Steinwand","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1079-6500","authenticated-orcid":false,"given":"Florian","family":"Borchert","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0903-0287","authenticated-orcid":false,"given":"Silvia","family":"Winkler","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6601-2942","authenticated-orcid":false,"given":"Matthieu-P.","family":"Schapranow","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,5]]},"reference":[{"issue":"1","key":"22_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1471-2105-13-161","volume":"13","author":"M Bada","year":"2012","unstructured":"Bada, M., et al.: Concept annotation in the CRAFT corpus. BMC Bioinform. 13(1), 1\u201320 (2012)","journal-title":"BMC Bioinform."},{"key":"22_CR2","doi-asserted-by":"crossref","unstructured":"Borchert, F., et al..: GGPOnc: A corpus of German medical text with rich metadata based on clinical practice guidelines. In: Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis. pp. 38\u201348 (2020)","DOI":"10.18653\/v1\/2020.louhi-1.5"},{"key":"22_CR3","unstructured":"Borchert, F., et al.: GGPOnc 2.0 - the German clinical guideline corpus for oncology: Curation workflow, annotation policy, baseline ner taggers. In: Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 3650\u20133660 (2022)"},{"key":"22_CR4","doi-asserted-by":"publisher","unstructured":"Bressem, K.K., et al.: MEDBERT.de: A comprehensive German BERT model for the medical domain. arXiv (2023). https:\/\/doi.org\/10.48550\/ARXIV.2303.08179","DOI":"10.48550\/ARXIV.2303.08179"},{"issue":"D1","key":"22_CR5","doi-asserted-by":"publisher","first-page":"D36","DOI":"10.1093\/nar\/gku1055","volume":"43","author":"GR Brown","year":"2015","unstructured":"Brown, G.R., et al.: Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 43(D1), D36\u2013D42 (2015)","journal-title":"Nucleic Acids Res."},{"key":"22_CR6","doi-asserted-by":"crossref","unstructured":"Cohen, A.M., Hersh, W.R.: A survey of current work in biomedical text mining. Briefings Bioinform. 6(1), 57\u201371 (03 2005)","DOI":"10.1093\/bib\/6.1.57"},{"key":"22_CR7","unstructured":"Collier, N., Ohta, T., Tsuruoka, Y., Tateisi, Y., Kim, J.D.: Introduction to the bio-entity recognition task at JNLPBA. In: Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA\/BioNLP). pp. 73\u201378. Geneva, Switzerland (2004)"},{"key":"22_CR8","unstructured":"Faessler, E., Modersohn, L., Lohr, C., Hahn, U.: ProGene - a large-scale, high-quality protein-gene annotated benchmark corpus. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 4585\u20134596 (2020)"},{"issue":"1","key":"22_CR9","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-021-22328-4","volume":"12","author":"JA Fries","year":"2021","unstructured":"Fries, J.A., et al.: Ontology-driven weak supervision for clinical entity classification in electronic health records. Nat. Commun. 12(1), 1\u201311 (2021)","journal-title":"Nat. Commun."},{"issue":"23","key":"22_CR10","doi-asserted-by":"publisher","first-page":"4087","DOI":"10.1093\/bioinformatics\/bty449","volume":"34","author":"JM Giorgi","year":"2018","unstructured":"Giorgi, J.M., Bader, G.D.: Transfer learning for biomedical named entity recognition with neural networks. Bioinformatics 34(23), 4087\u20134094 (2018)","journal-title":"Bioinformatics"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Gonzalez-Agirre, A., Marimon, M., Intxaurrondo, A., Rabal, O., Villegas, M., Krallinger, M.: PharmaCoNER: Pharmacological substances, compounds and proteins named entity recognition track. In: Proceedings of the 5th Workshop on BioNLP Open Shared Tasks, pp. 1\u201310. Association for Computational Linguistics, Hong Kong, China (2019)","DOI":"10.18653\/v1\/D19-5701"},{"key":"22_CR12","unstructured":"Hasso Plattner Institute\u2019s Digital Health Center on GitHub: GGTweak source code repository. https:\/\/github.com\/hpi-dhc\/ggponc_molecular (2023)"},{"key":"22_CR13","doi-asserted-by":"crossref","unstructured":"Henkenjohann, R., et al.: An engineering approach towards multi-site virtual molecular tumor board software. In: International Conference on ICT for Health, Accessibility and Wellbeing, pp. 156\u2013170. Springer (2021)","DOI":"10.1007\/978-3-030-94209-0_13"},{"issue":"1","key":"22_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12859-020-3393-1","volume":"21","author":"S Hong","year":"2020","unstructured":"Hong, S., Lee, J.G.: DTranNER: biomedical named entity recognition with deep learning-based label-label transition model. BMC Bioinform. 21(1), 1\u201311 (2020)","journal-title":"BMC Bioinform."},{"key":"22_CR15","unstructured":"Klie, J.C., Bugert, M., Boullosa, B., Eckart de Castilho, R., Gurevych, I.: The INCEpTION platform: machine-assisted and knowledge-oriented interactive annotation. In: COLING 2018 \u2013 Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pp. 5\u20139 (2018)"},{"key":"22_CR16","doi-asserted-by":"crossref","unstructured":"Lentzen, M., et al.: Critical assessment of transformer-based ai models for German clinical notes. JAMIA open 5(4), ooac087 (2022)","DOI":"10.1093\/jamiaopen\/ooac087"},{"key":"22_CR17","doi-asserted-by":"crossref","unstructured":"Lison, P., Barnes, J., Hubin, A.: skweak: Weak supervision made easy for NLP. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, pp. 337\u2013346. Association for Computational Linguistics, Online (2021)","DOI":"10.18653\/v1\/2021.acl-demo.40"},{"key":"22_CR18","doi-asserted-by":"publisher","unstructured":"Montani, I.,et al.Flusskind: explosion\/ spaCy: v3.4.1: Fix compatibility with CuPy v9.x (Jul 2022). https:\/\/doi.org\/10.5281\/zenodo.6907665","DOI":"10.5281\/zenodo.6907665"},{"key":"22_CR19","doi-asserted-by":"crossref","unstructured":"Perera, N., Dehmer, M., Emmert-Streib, F.: Named entity recognition and relation detection for biomedical information extraction. Frontiers in cell and developmental biology, p. 673 (2020)","DOI":"10.3389\/fcell.2020.00673"},{"key":"22_CR20","doi-asserted-by":"crossref","unstructured":"Raj Kanakarajan, K., Kundumani, B., Sankarasubbu, M.: BioELECTRA: pretrained biomedical text encoder using discriminators. In: Proceedings of the 20th Workshop on Biomedical Language Processing, pp. 143\u2013154 (2021)","DOI":"10.18653\/v1\/2021.bionlp-1.16"},{"key":"22_CR21","doi-asserted-by":"crossref","unstructured":"Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., R\u00e9, C.: Snorkel: Rapid training data creation with weak supervision. In: Proceedings of the VLDB Endowment. International Conference on Very Large Data Bases. vol. 11, p. 269 (2017)","DOI":"10.14778\/3157794.3157797"},{"key":"22_CR22","doi-asserted-by":"crossref","unstructured":"Safranchik, E., Luo, S., Bach, S.: Weakly supervised sequence tagging from noisy rules. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 5570\u20135578 (2020)","DOI":"10.1609\/aaai.v34i04.6009"},{"key":"22_CR23","doi-asserted-by":"crossref","unstructured":"Smith, L., et al.: Overview of BioCreative II gene mention recognition. Genome Biol. 9(2), 1\u201319 (2008)","DOI":"10.1186\/gb-2008-9-s2-s1"},{"issue":"1","key":"22_CR24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12859-020-03881-z","volume":"22","author":"C Sun","year":"2021","unstructured":"Sun, C., Yang, Z., Wang, L., Zhang, Y., Lin, H., Wang, J.: Deep learning with language models improves named entity recognition for PharmaCoNER. BMC Bioinform. 22(1), 1\u201316 (2021)","journal-title":"BMC Bioinform."},{"issue":"17","key":"22_CR25","doi-asserted-by":"publisher","first-page":"2792","DOI":"10.1093\/bioinformatics\/btab042","volume":"37","author":"L Weber","year":"2021","unstructured":"Weber, L., S\u00e4nger, M., M\u00fcnchmeyer, J., Habibi, M., Leser, U., Akbik, A.: HunFlair: an easy-to-use tool for state-of-the-art biomedical named entity recognition. Bioinformatics 37(17), 2792\u20132794 (2021)","journal-title":"Bioinformatics"},{"key":"22_CR26","unstructured":"Wikipedia: Kategorie:Protein. https:\/\/de.wikipedia.org\/wiki\/Kategorie: Protein (2023)"},{"key":"22_CR27","unstructured":"Zesch, T., Bewersdorff, J.: German medical natural language processing-a data-centric survey. In: Applications in Medicine and Manufacturing, pp. 137\u2013142 (2022)"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-34344-5_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T13:42:10Z","timestamp":1709818930000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-34344-5_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031343438","9783031343445"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-34344-5_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"5 June 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AIME","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Intelligence in Medicine","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portoroz","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Slovenia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 June 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 June 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aime2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.aimedicine.info\/aime23\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EASY CHAIR","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"108","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"23","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3 (+ 1 meta-review)","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3 (demonstration papers, similar to short papers)","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}