{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:25:07Z","timestamp":1742912707883,"version":"3.40.3"},"publisher-location":"Cham","reference-count":15,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031342035"},{"type":"electronic","value":"9783031342042"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-34204-2_17","type":"book-chapter","created":{"date-parts":[[2023,6,6]],"date-time":"2023-06-06T23:04:18Z","timestamp":1686092658000},"page":"191-202","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Streamlined Training of\u00a0GCN for\u00a0Node Classification with\u00a0Automatic Loss Function and\u00a0Optimizer Selection"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4112-802X","authenticated-orcid":false,"family":"Sanaullah","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0009-1337-7513","authenticated-orcid":false,"given":"Shamini","family":"Koravuna","sequence":"additional","affiliation":[]},{"given":"Ulrich","family":"R\u00fcckert","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7425-8766","authenticated-orcid":false,"given":"Thorsten","family":"Jungeblut","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,7]]},"reference":[{"key":"17_CR1","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.aiopen.2021.01.001","volume":"1","author":"J Zhou","year":"2020","unstructured":"Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI open 1, 57\u201381 (2020)","journal-title":"AI open"},{"issue":"3","key":"17_CR2","doi-asserted-by":"publisher","first-page":"1692","DOI":"10.1007\/s12083-021-01074-w","volume":"14","author":"L Zheng","year":"2021","unstructured":"Zheng, L., Zhou, J., Chen, C., Wu, B., Wang, L., Zhang, B.: Asfgnn: automated separated-federated graph neural network. Peer-to-Peer Network. Appl. 14(3), 1692\u20131704 (2021)","journal-title":"Peer-to-Peer Network. Appl."},{"issue":"6","key":"17_CR3","doi-asserted-by":"publisher","first-page":"515","DOI":"10.1049\/iet-gtd.2011.0851","volume":"6","author":"T Niknam","year":"2012","unstructured":"Niknam, T., Narimani, M., Aghaei, J., Azizipanah-Abarghooee, R.: Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Generation, Trans. Distrib. 6(6), 515\u2013527 (2012)","journal-title":"IET Generation, Trans. Distrib."},{"issue":"1","key":"17_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40649-019-0069-y","volume":"6","author":"S Zhang","year":"2019","unstructured":"Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Social Netw. 6(1), 1\u201323 (2019). https:\/\/doi.org\/10.1186\/s40649-019-0069-y","journal-title":"Comput. Social Netw."},{"key":"17_CR5","doi-asserted-by":"crossref","unstructured":"Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)","DOI":"10.1609\/aaai.v32i1.11604"},{"key":"17_CR6","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"668","DOI":"10.1007\/978-3-030-63823-8_76","volume-title":"Neural Information Processing","author":"T Danel","year":"2020","unstructured":"Danel, T., et al.: Spatial graph convolutional networks. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1333, pp. 668\u2013675. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-63823-8_76"},{"key":"17_CR7","doi-asserted-by":"crossref","unstructured":"Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., Pei, J.: Am-gcn: Adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1243\u20131253 (2020)","DOI":"10.1145\/3394486.3403177"},{"key":"17_CR8","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Li\u00f2, P., Bengio, Y.: Graph Attention Networks. In: International Conference on Learning Representations (2018)"},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"Sanaullah, Baig, H., Madsen, J., Lee, J.A.: A parallel approach to perform threshold value and propagation delay analyses of genetic logic circuit models. ACS Synth. Biol. 9(12), 3422\u20133428 (2020)","DOI":"10.1021\/acssynbio.0c00379"},{"key":"17_CR10","doi-asserted-by":"crossref","unstructured":"Sanaullah, Koravuna, S., R\u00fcckert, U., Jungeblut, T.: Snns model analyzing and visualizing experimentation using ravsim. In: Engineering Applications of Neural Networks: 23rd International Conference, EAAAI\/EANN 2022, Chersonissos, Crete, Greece, June 17\u201320, 2022, Proceedings. pp. 40\u201351. Springer (2022)","DOI":"10.1007\/978-3-031-08223-8_4"},{"issue":"4","key":"17_CR11","doi-asserted-by":"publisher","first-page":"446","DOI":"10.1016\/j.autcon.2010.11.013","volume":"20","author":"W Yan","year":"2011","unstructured":"Yan, W., Culp, C., Graf, R.: Integrating bim and gaming for real-time interactive architectural visualization. Autom. Constr. 20(4), 446\u2013458 (2011)","journal-title":"Autom. Constr."},{"issue":"3","key":"17_CR12","first-page":"93","volume":"29","author":"P Sen","year":"2008","unstructured":"Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93\u201393 (2008)","journal-title":"AI Mag."},{"key":"17_CR13","doi-asserted-by":"crossref","unstructured":"Gabruseva, T., Poplavskiy, D., Kalinin, A.: Deep learning for automatic pneumonia detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 350\u2013351 (2020)","DOI":"10.1109\/CVPRW50498.2020.00183"},{"issue":"2","key":"17_CR14","first-page":"201","volume":"75","author":"DN McCloskey","year":"1985","unstructured":"McCloskey, D.N.: The loss function has been mislaid: the rhetoric of significance tests. Am. Econ. Rev. 75(2), 201\u2013205 (1985)","journal-title":"Am. Econ. Rev."},{"key":"17_CR15","unstructured":"Code availability. https:\/\/github.com\/Rao-Sanaullah\/GNN-Classification-with-Automatic-Loss-Function-and-Optimizer-Selection Accessed Apr 2023"}],"container-title":["Communications in Computer and Information Science","Engineering Applications of Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-34204-2_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,6]],"date-time":"2023-06-06T23:11:28Z","timestamp":1686093088000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-34204-2_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031342035","9783031342042"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-34204-2_17","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"7 June 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"In this study, we have made the code used in our experiments publicly available on GitHub []. This allows other researchers to replicate our experiments and build upon our work and to ensure the reproducibility of our results, we have used publicly available datasets for generating all the test cases.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Availability"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Le\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 June 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 June 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eannconf.org\/2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easyacademia","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"125","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}