{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T04:02:20Z","timestamp":1729569740479,"version":"3.28.0"},"publisher-location":"Cham","reference-count":60,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031340192"},{"type":"electronic","value":"9783031340208"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-34020-8_3","type":"book-chapter","created":{"date-parts":[[2023,5,26]],"date-time":"2023-05-26T10:02:30Z","timestamp":1685095350000},"page":"36-47","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Algorithm Selection for\u00a0Large-Scale Multi-objective Optimization"],"prefix":"10.1007","author":[{"given":"Mustafa","family":"M\u0131s\u0131r","sequence":"first","affiliation":[]},{"given":"Xinye","family":"Cai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,27]]},"reference":[{"key":"3_CR1","volume-title":"An Introduction to Optimization","author":"EK Chong","year":"2004","unstructured":"Chong, E.K., Zak, S.H.: An Introduction to Optimization. Wiley, Hoboken (2004)"},{"key":"3_CR2","doi-asserted-by":"publisher","first-page":"403","DOI":"10.1007\/978-1-4614-6940-7_15","volume-title":"Search Methodologies","author":"K Deb","year":"2014","unstructured":"Deb, K., Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 403\u2013449. Springer, Boston (2014). https:\/\/doi.org\/10.1007\/978-1-4614-6940-7_15"},{"key":"3_CR3","unstructured":"Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2419\u20132426. IEEE (2008)"},{"key":"3_CR4","doi-asserted-by":"publisher","first-page":"26194","DOI":"10.1109\/ACCESS.2018.2832181","volume":"6","author":"K Li","year":"2018","unstructured":"Li, K., Wang, R., Zhang, T., Ishibuchi, H.: Evolutionary many-objective optimization: a comparative study of the state-of-the-art. IEEE Access 6, 26194\u201326214 (2018)","journal-title":"IEEE Access"},{"key":"3_CR5","unstructured":"Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-dominated set. Citeseer (1994)"},{"key":"3_CR6","doi-asserted-by":"crossref","unstructured":"Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 465\u2013472 (2012)","DOI":"10.1145\/2330163.2330230"},{"key":"3_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"292","DOI":"10.1007\/bfb0056872","volume-title":"Parallel Problem Solving from Nature \u2014 PPSN V","author":"E Zitzler","year":"1998","unstructured":"Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms\u2014a comparative case study. In: Eiben, A.E., B\u00e4ck, T., Schoenauer, M., Schwefel, H.P. (eds.) PPSN 1998. LNCS, pp. 292\u2013301. Springer, Cham (1998). https:\/\/doi.org\/10.1007\/bfb0056872"},{"key":"3_CR8","unstructured":"Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm research: a history and analysis. Technical report, Department of Electrical and Computer Engineering Air Force Institute of Technology, OH, Technical Report TR-98-03 (1998)"},{"key":"3_CR9","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"688","DOI":"10.1007\/978-3-540-24694-7_71","volume-title":"MICAI 2004: Advances in Artificial Intelligence","author":"CA Coello Coello","year":"2004","unstructured":"Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688\u2013697. Springer, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-540-24694-7_71"},{"key":"3_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1007\/978-3-319-15892-1_8","volume-title":"Evolutionary Multi-Criterion Optimization","author":"H Ishibuchi","year":"2015","unstructured":"Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110\u2013125. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-15892-1_8"},{"key":"3_CR11","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1109\/4235.996017","volume":"6","author":"K Deb","year":"2002","unstructured":"Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182\u2013197 (2002)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"3_CR12","unstructured":"Fonseca, C.M., Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. In: Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization (EMO), vol. 216, p. 240 (2005)"},{"key":"3_CR13","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-0-85729-652-8_1","volume-title":"Multi-objective Evolutionary Optimisation for Product Design and Manufacturing","author":"K Deb","year":"2011","unstructured":"Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3\u201334. Springer, London (2011). https:\/\/doi.org\/10.1007\/978-0-85729-652-8_1"},{"key":"3_CR14","doi-asserted-by":"publisher","first-page":"995","DOI":"10.1007\/978-3-662-43505-2_49","volume-title":"Springer Handbook of Computational Intelligence","author":"K Deb","year":"2015","unstructured":"Deb, K.: Multi-objective evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 995\u20131015. Springer, Heidelberg (2015). https:\/\/doi.org\/10.1007\/978-3-662-43505-2_49"},{"key":"3_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"849","DOI":"10.1007\/3-540-45356-3_83","volume-title":"Parallel Problem Solving from Nature PPSN VI","author":"K Deb","year":"2000","unstructured":"Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849\u2013858. Springer, Heidelberg (2000). https:\/\/doi.org\/10.1007\/3-540-45356-3_83"},{"key":"3_CR16","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1162\/106365600568167","volume":"8","author":"JD Knowles","year":"2000","unstructured":"Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8, 149\u2013172 (2000)","journal-title":"Evol. Comput."},{"key":"3_CR17","unstructured":"Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)"},{"key":"3_CR18","unstructured":"Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 283\u2013290. Morgan Kaufmann Publishers Inc. (2001)"},{"key":"3_CR19","doi-asserted-by":"publisher","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","volume":"11","author":"Q Zhang","year":"2007","unstructured":"Zhang, Q., Li, H.: MOEA\/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712\u2013731 (2007)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"3_CR20","doi-asserted-by":"crossref","unstructured":"Coello, C.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), vol. 2, pp. 1051\u20131056. IEEE (2002)","DOI":"10.1109\/CEC.2002.1004388"},{"key":"3_CR21","doi-asserted-by":"publisher","first-page":"761","DOI":"10.1007\/s00170-009-2303-5","volume":"48","author":"LP Ding","year":"2010","unstructured":"Ding, L.P., Feng, Y.X., Tan, J.R., Gao, Y.C.: A new multi-objective ant colony algorithm for solving the disassembly line balancing problem. Int. J. Adv. Manuf. Technol. 48, 761\u2013771 (2010)","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"3_CR22","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1007\/978-1-4471-2318-7_16","volume-title":"Research and Development in Intelligent Systems XXVIII","author":"WK Mashwani","year":"2011","unstructured":"Mashwani, W.K.: MOEA\/D with DE and PSO: MOEA\/D-DE+PSO. In: Bramer, M., Petridis, M., Nolle, L. (eds.) SGAI 2011, pp. 217\u2013221. Springer, London (2011). https:\/\/doi.org\/10.1007\/978-1-4471-2318-7_16"},{"key":"3_CR23","doi-asserted-by":"publisher","first-page":"1845","DOI":"10.1109\/TSMCB.2012.2231860","volume":"43","author":"L Ke","year":"2013","unstructured":"Ke, L., Zhang, Q., Battiti, R.: MOEA\/D-ACO: a multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Trans. Cybern. 43, 1845\u20131859 (2013)","journal-title":"IEEE Trans. Cybern."},{"key":"3_CR24","doi-asserted-by":"crossref","unstructured":"Alhindi, A., Zhang, Q.: MOEA\/D with tabu search for multiobjective permutation flow shop scheduling problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1155\u20131164. IEEE (2014)","DOI":"10.1109\/CEC.2014.6900413"},{"key":"3_CR25","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1109\/4235.585893","volume":"1","author":"D Wolpert","year":"1997","unstructured":"Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67\u201382 (1997)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"3_CR26","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1162\/evco_a_00242","volume":"27","author":"P Kerschke","year":"2019","unstructured":"Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27, 3\u201345 (2019)","journal-title":"Evol. Comput."},{"key":"3_CR27","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1016\/S0004-3702(00)00081-3","volume":"126","author":"C Gomes","year":"2001","unstructured":"Gomes, C., Selman, B.: Algorithm portfolios. Artif. Intell. 126, 43\u201362 (2001)","journal-title":"Artif. Intell."},{"key":"3_CR28","doi-asserted-by":"crossref","unstructured":"Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat, V.A.: Deep learning for algorithm portfolios. In: Proceedings of the 13th Conference on Artificial Intelligence (AAAI), pp. 1280\u20131286 (2016)","DOI":"10.1609\/aaai.v30i1.10170"},{"key":"3_CR29","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1613\/jair.2490","volume":"32","author":"L Xu","year":"2008","unstructured":"Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565\u2013606 (2008)","journal-title":"J. Artif. Intell. Res."},{"key":"3_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1007\/978-3-642-34413-8_23","volume-title":"Learning and Intelligent Optimization","author":"X Yun","year":"2012","unstructured":"Yun, X., Epstein, S.L.: Learning algorithm portfolios for parallel execution. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 323\u2013338. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-34413-8_23"},{"key":"3_CR31","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1162\/evco_a_00236","volume":"27","author":"P Kerschke","year":"2019","unstructured":"Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning. Evol. Comput. 27, 99\u2013127 (2019)","journal-title":"Evol. Comput."},{"key":"3_CR32","unstructured":"Messelis, T., De Causmaecker, P., Vanden Berghe, G.: Algorithm performance prediction for nurse rostering. In: Proceedings of the 6th Multidisciplinary International Scheduling Conference: Theory and Applications (MISTA 2013), pp. 21\u201338 (2013)"},{"key":"3_CR33","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1007\/978-3-642-44973-4_42","volume-title":"Learning and Intelligent Optimization","author":"N Musliu","year":"2013","unstructured":"Musliu, N., Schwengerer, M.: Algorithm selection for the graph coloring problem. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 389\u2013403. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-44973-4_42"},{"key":"3_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"202","DOI":"10.1007\/978-3-319-19084-6_18","volume-title":"Learning and Intelligent Optimization","author":"L Kotthoff","year":"2015","unstructured":"Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202\u2013217. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-19084-6_18"},{"key":"3_CR35","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1007\/s10732-017-9328-y","volume":"24","author":"M Wagner","year":"2018","unstructured":"Wagner, M., Lindauer, M., M\u0131s\u0131r, M., Nallaperuma, S., Hutter, F.: A case study of algorithm selection for the traveling thief problem. J. Heuristics 24, 295\u2013320 (2018)","journal-title":"J. Heuristics"},{"key":"3_CR36","unstructured":"Stephenson, M., Renz, J.: Creating a hyper-agent for solving angry birds levels. In: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (2017)"},{"key":"3_CR37","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.artint.2016.04.003","volume":"237","author":"B Bischl","year":"2017","unstructured":"Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell. 237, 41\u201358 (2017)","journal-title":"Artif. Intell."},{"key":"3_CR38","doi-asserted-by":"crossref","unstructured":"Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI), pp. 210\u2013216 (2010)","DOI":"10.1609\/aaai.v24i1.7565"},{"key":"3_CR39","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1007\/978-3-319-19084-6_6","volume-title":"Learning and Intelligent Optimization","author":"M M\u0131s\u0131r","year":"2015","unstructured":"M\u0131s\u0131r, M., Handoko, S.D., Lau, H.C.: OSCAR: online selection of algorithm portfolios with case study on memetic algorithms. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 59\u201373. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-19084-6_6"},{"key":"3_CR40","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1007\/978-3-319-19084-6_3","volume-title":"Learning and Intelligent Optimization","author":"M M\u0131s\u0131r","year":"2015","unstructured":"M\u0131s\u0131r, M., Handoko, S.D., Lau, H.C.: ADVISER: a web-based algorithm portfolio deviser. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 23\u201328. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-19084-6_3"},{"key":"3_CR41","unstructured":"Lau, H., M\u0131s\u0131r, M., Xiang, L., Lingxiao, J.: ADVISER$$^+$$: toward a usable web-based algorithm portfolio deviser. In: Proceedings of the 12th Metaheuristics International Conference (MIC), Barcelona, Spain, pp. 592\u2013599 (2017)"},{"key":"3_CR42","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1007\/978-3-319-50349-3_7","volume-title":"Learning and Intelligent Optimization","author":"A Gunawan","year":"2016","unstructured":"Gunawan, A., Lau, H.C., M\u0131s\u0131r, M.: Designing and comparing multiple portfolios of parameter configurations for online algorithm selection. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 91\u2013106. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-50349-3_7"},{"key":"3_CR43","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"454","DOI":"10.1007\/978-3-642-23786-7_35","volume-title":"Principles and Practice of Constraint Programming \u2013 CP 2011","author":"S Kadioglu","year":"2011","unstructured":"Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454\u2013469. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-23786-7_35"},{"key":"3_CR44","doi-asserted-by":"publisher","first-page":"745","DOI":"10.1613\/jair.4726","volume":"53","author":"M Lindauer","year":"2015","unstructured":"Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: an automatically configured algorithm selector. J. Artif. Intell. Res. 53, 745\u2013778 (2015)","journal-title":"J. Artif. Intell. Res."},{"key":"3_CR45","doi-asserted-by":"crossref","unstructured":"Misir, M.: Cross-domain algorithm selection: algorithm selection across selection hyper-heuristics. In: 2022 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 22\u201329. IEEE (2022)","DOI":"10.1109\/SSCI51031.2022.10022078"},{"key":"3_CR46","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1016\/j.artint.2016.12.001","volume":"244","author":"M M\u0131s\u0131r","year":"2017","unstructured":"M\u0131s\u0131r, M., Sebag, M.: ALORS: an algorithm recommender system. Artif. Intell. 244, 291\u2013314 (2017)","journal-title":"Artif. Intell."},{"key":"3_CR47","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1155\/2009\/421425","volume":"2009","author":"X Su","year":"2009","unstructured":"Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)","journal-title":"Adv. Artif. Intell."},{"key":"3_CR48","doi-asserted-by":"crossref","unstructured":"M\u0131s\u0131r, M.: Data sampling through collaborative filtering for algorithm selection. In: The 16th IEEE Congress on Evolutionary Computation (CEC), pp. 2494\u20132501. IEEE (2017)","DOI":"10.1109\/CEC.2017.7969608"},{"key":"3_CR49","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1007\/978-3-030-37599-7_27","volume-title":"Machine Learning, Optimization, and Data Science","author":"M M\u0131s\u0131r","year":"2019","unstructured":"M\u0131s\u0131r, M.: Active matrix completion for algorithm selection. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD 2019. LNCS, vol. 11943, pp. 321\u2013334. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-37599-7_27"},{"key":"3_CR50","doi-asserted-by":"publisher","first-page":"403","DOI":"10.1007\/BF02163027","volume":"14","author":"GH Golub","year":"1970","unstructured":"Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403\u2013420 (1970)","journal-title":"Numer. Math."},{"key":"3_CR51","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1109\/MC.2009.263","volume":"42","author":"Y Koren","year":"2009","unstructured":"Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 30\u201337 (2009)","journal-title":"Computer"},{"key":"3_CR52","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1007\/978-3-319-68759-9_16","volume-title":"Simulated Evolution and Learning","author":"M M\u0131s\u0131r","year":"2017","unstructured":"M\u0131s\u0131r, M.: Matrix factorization based benchmark set analysis: a case study on HyFlex. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 184\u2013195. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-68759-9_16"},{"key":"3_CR53","doi-asserted-by":"crossref","unstructured":"M\u0131s\u0131r, M.: Benchmark set reduction for cheap empirical algorithmic studies. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC) (2021)","DOI":"10.1109\/CEC45853.2021.9505012"},{"key":"3_CR54","doi-asserted-by":"crossref","unstructured":"Zille, H., Mostaghim, S.: Comparison study of large-scale optimisation techniques on the LSMOP benchmark functions. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1\u20138. IEEE (2017)","DOI":"10.1109\/SSCI.2017.8280974"},{"key":"3_CR55","doi-asserted-by":"crossref","unstructured":"Nebro, A., Durillo, J., Garc\u00eda-Nieto, J., Coello Coello, C., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MCDM 2009), pp. 66\u201373. IEEE Press (2009)","DOI":"10.1109\/MCDM.2009.4938830"},{"key":"3_CR56","doi-asserted-by":"publisher","first-page":"275","DOI":"10.1109\/TEVC.2015.2455812","volume":"20","author":"X Ma","year":"2015","unstructured":"Ma, X., et al.: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 20, 275\u2013298 (2015)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"3_CR57","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1109\/TEVC.2016.2600642","volume":"22","author":"X Zhang","year":"2016","unstructured":"Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. 22, 97\u2013112 (2016)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"3_CR58","doi-asserted-by":"publisher","first-page":"260","DOI":"10.1109\/TEVC.2017.2704782","volume":"22","author":"H Zille","year":"2017","unstructured":"Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale multiobjective optimization based on problem transformation. IEEE Trans. Evol. Comput. 22, 260\u2013275 (2017)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"3_CR59","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.tcs.2011.03.012","volume":"425","author":"A Auger","year":"2012","unstructured":"Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theor. Comput. Sci. 425, 75\u2013103 (2012)","journal-title":"Theor. Comput. Sci."},{"key":"3_CR60","doi-asserted-by":"publisher","first-page":"4108","DOI":"10.1109\/TCYB.2016.2600577","volume":"47","author":"R Cheng","year":"2016","unstructured":"Cheng, R., Jin, Y., Olhofer, M., et al.: Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 47, 4108\u20134121 (2016)","journal-title":"IEEE Trans. Cybern."}],"container-title":["Communications in Computer and Information Science","Optimization and Learning"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-34020-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,21]],"date-time":"2024-10-21T04:56:01Z","timestamp":1729486561000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-34020-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031340192","9783031340208"],"references-count":60,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-34020-8_3","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"27 May 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"OLA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Optimization and Learning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malaga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 May 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 May 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ola2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ola2023.sciencesconf.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Open","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"sciencesconf.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"78","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}