{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T04:44:03Z","timestamp":1726202643626},"publisher-location":"Cham","reference-count":35,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031338410"},{"type":"electronic","value":"9783031338427"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-33842-7_14","type":"book-chapter","created":{"date-parts":[[2023,7,17]],"date-time":"2023-07-17T06:02:26Z","timestamp":1689573746000},"page":"162-173","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Tuning U-Net for\u00a0Brain Tumor Segmentation"],"prefix":"10.1007","author":[{"given":"Micha\u0142","family":"Futrega","sequence":"first","affiliation":[]},{"given":"Micha\u0142","family":"Marcinkiewicz","sequence":"additional","affiliation":[]},{"given":"Pablo","family":"Ribalta","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,7,18]]},"reference":[{"issue":"12","key":"14_CR1","doi-asserted-by":"publisher","first-page":"613","DOI":"10.1016\/j.cancergen.2012.10.009","volume":"205","author":"ML Goodenberger","year":"2012","unstructured":"Goodenberger, M.L., Jenkins, R.B.: Genetics of adult glioma. Cancer Genet. 205(12), 613\u2013621 (2012). https:\/\/doi.org\/10.1016\/j.cancergen.2012.10.009","journal-title":"Cancer Genet."},{"issue":"3","key":"14_CR2","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211\u2013252 (2015). https:\/\/doi.org\/10.1007\/s11263-015-0816-y","journal-title":"Int. J. Comput. Vis."},{"issue":"16","key":"14_CR3","doi-asserted-by":"publisher","first-page":"2555","DOI":"10.1093\/bioinformatics\/btx188","volume":"33","author":"T Zeng","year":"2017","unstructured":"Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555\u20132562 (2017). https:\/\/doi.org\/10.1093\/bioinformatics\/btx188","journal-title":"Bioinformatics"},{"key":"14_CR4","unstructured":"Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification (2021)"},{"issue":"10","key":"14_CR5","doi-asserted-by":"publisher","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","volume":"34","author":"BH Menze","year":"2015","unstructured":"Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993\u20132024 (2015). https:\/\/doi.org\/10.1109\/TMI.2014.2377694","journal-title":"IEEE Trans. Med. Imaging"},{"key":"14_CR6","doi-asserted-by":"publisher","unstructured":"Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4 (2017). https:\/\/doi.org\/10.1038\/sdata.2017.117","DOI":"10.1038\/sdata.2017.117"},{"key":"14_CR7","doi-asserted-by":"publisher","unstructured":"Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https:\/\/doi.org\/10.7937\/K9\/TCIA.2017.KLXWJJ1Q","DOI":"10.7937\/K9\/TCIA.2017.KLXWJJ1Q"},{"key":"14_CR8","doi-asserted-by":"publisher","unstructured":"Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https:\/\/doi.org\/10.7937\/K9\/TCIA.2017.GJQ7R0EF","DOI":"10.7937\/K9\/TCIA.2017.GJQ7R0EF"},{"key":"14_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"14_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1007\/978-3-030-11726-9_28","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"A Myronenko","year":"2019","unstructured":"Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311\u2013320. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-11726-9_28"},{"key":"14_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1007\/978-3-030-46640-4_22","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"Z Jiang","year":"2020","unstructured":"Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231\u2013241. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-46640-4_22"},{"issue":"2","key":"14_CR12","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","volume":"18","author":"F Isensee","year":"2021","unstructured":"Isensee, F., J\u00e4ger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203\u2013211 (2021)","journal-title":"Nat. Methods"},{"key":"14_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"118","DOI":"10.1007\/978-3-030-72087-2_11","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"F Isensee","year":"2021","unstructured":"Isensee, F., J\u00e4ger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118\u2013132. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-72087-2_11"},{"key":"14_CR14","doi-asserted-by":"publisher","unstructured":"Futrega, M., Milesi, A., Marcinkiewicz, M., Ribalta, P.: Optimized U-Net for brain tumor segmentation (2021). https:\/\/doi.org\/10.48550\/ARXIV.2110.03352. https:\/\/arxiv.org\/abs\/2110.03352","DOI":"10.48550\/ARXIV.2110.03352"},{"key":"14_CR15","unstructured":"Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas (2018)"},{"key":"14_CR16","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)","DOI":"10.1109\/CVPR.2016.90"},{"key":"14_CR17","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2016)","DOI":"10.1109\/CVPR.2017.243"},{"key":"14_CR18","unstructured":"Szegedy, C., et al.: Deep residual learning for image recognition (2014)"},{"key":"14_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-00889-5_1","volume-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","author":"Z Zhou","year":"2018","unstructured":"Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA\/ML-CDS -2018. LNCS, vol. 11045, pp. 3\u201311. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00889-5_1"},{"key":"14_CR20","doi-asserted-by":"crossref","unstructured":"Hatamizadeh, A., Yang, D., Roth, H., Xu, D.: UNETR: transformers for 3D medical image segmentation (2021)","DOI":"10.1109\/WACV51458.2022.00181"},{"key":"14_CR21","doi-asserted-by":"crossref","unstructured":"Zhu, Q., Du, B., Turkbey, B., Choyke, P.L., Yan, P.: Deeply-supervised CNN for prostate segmentation (2017)","DOI":"10.1109\/IJCNN.2017.7965852"},{"key":"14_CR22","unstructured":"Ghiasi, G., Lin, T.Y., Le, Q.V.: DropBlock: a regularization method for convolutional networks (2018)"},{"key":"14_CR23","unstructured":"Cox, R., et al.: A (sort of) new image data format standard: NiFTI-1, vol. 22, January 2004"},{"key":"14_CR24","doi-asserted-by":"crossref","unstructured":"Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision (3DV) (2016)","DOI":"10.1109\/3DV.2016.79"},{"key":"14_CR25","unstructured":"Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d\u2019 Alch\u00e9-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024\u20138035. Curran Associates, Inc. (2019). http:\/\/papers.neurips.cc\/paper\/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf"},{"key":"14_CR26","unstructured":"Micikevicius, P., et al.: Mixed precision training (2018)"},{"key":"14_CR27","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)"},{"key":"14_CR28","unstructured":"Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts (2017)"},{"key":"14_CR29","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification (2015)","DOI":"10.1109\/ICCV.2015.123"},{"key":"14_CR30","doi-asserted-by":"publisher","first-page":"4128","DOI":"10.1038\/s41467-022-30695-9","volume":"13","author":"M Antonelli","year":"2022","unstructured":"Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13, 4128 (2022)","journal-title":"Nat. Commun."},{"key":"14_CR31","unstructured":"NVIDIA nnU-Net implementation. https:\/\/github.com\/NVIDIA\/DeepLearningExamples\/tree\/master\/PyTorch\/Segmentation\/nnUNet. Accessed 30 Sept 2021"},{"key":"14_CR32","unstructured":"Dosovitskiy, A., et al.: An image is worth $$16\\times 16$$ words: transformers for image recognition at scale (2021)"},{"key":"14_CR33","unstructured":"Vaswani, A., et al.: Attention is all you need (2017)"},{"key":"14_CR34","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2014)"},{"key":"14_CR35","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: International Conference on Computer Vision (ICCV) (2017)","DOI":"10.1109\/ICCV.2017.324"}],"container-title":["Lecture Notes in Computer Science","Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-33842-7_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,8]],"date-time":"2024-02-08T06:04:29Z","timestamp":1707372269000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-33842-7_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031338410","9783031338427"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-33842-7_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"18 July 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BrainLes","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International MICCAI Brainlesion Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwb2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.brainlesion-workshop.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"65","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"71% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1-2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}