{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T03:27:57Z","timestamp":1726198077244},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031333736"},{"type":"electronic","value":"9783031333743"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-33374-3_16","type":"book-chapter","created":{"date-parts":[[2023,5,26]],"date-time":"2023-05-26T06:02:30Z","timestamp":1685080950000},"page":"197-209","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An Improved Visual Assessment with\u00a0Data-Dependent Kernel for\u00a0Stream Clustering"],"prefix":"10.1007","author":[{"given":"Baojie","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Yang","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Ye","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Sutharshan","family":"Rajasegarar","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Hong Xian","family":"Li","sequence":"additional","affiliation":[]},{"given":"Maia","family":"Angelova","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,27]]},"reference":[{"key":"16_CR1","doi-asserted-by":"crossref","unstructured":"Ackermann, M.R., M\u00e4rtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.: Streamkm++ a clustering algorithm for data streams. J. Exp. Algorithmics (JEA) 17, 2\u20131 (2012)","DOI":"10.1145\/2133803.2184450"},{"key":"16_CR2","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C., Philip, S.Y., Han, J., Wang, J.: A framework for clustering evolving data streams. In: Proceedings 2003 VLDB Conference, pp. 81\u201392. Elsevier (2003)","DOI":"10.1016\/B978-012722442-8\/50016-1"},{"key":"16_CR3","unstructured":"Arthur, D., Vassilvitskii, S.: K-means++: The advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 1027\u20131035. Society for Industrial and Applied Mathematics, USA (2007)"},{"key":"16_CR4","unstructured":"Bezdek, J. C. Hathaway, R.J.: Vat: a tool for visual assessment of (cluster) tendency. In: International Joint Conference on Neural Networks (2002)"},{"issue":"14","key":"16_CR5","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1093\/bioinformatics\/btl242","volume":"22","author":"KM Borgwardt","year":"2006","unstructured":"Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Sch\u00f6lkopf, B., Smola, A.J.: Integrating structured biological data by Kernel Maximum Mean Discrepancy. Bioinformatics 22(14), 49\u201357 (2006)","journal-title":"Bioinformatics"},{"key":"16_CR6","doi-asserted-by":"crossref","unstructured":"Cao, F., Estert, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM International Conference on Data Mining, pp. 328\u2013339. SIAM (2006)","DOI":"10.1137\/1.9781611972764.29"},{"key":"16_CR7","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"508","DOI":"10.1007\/978-3-319-93037-4_40","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"M Chenaghlou","year":"2018","unstructured":"Chenaghlou, M., Moshtaghi, M., Leckie, C., Salehi, M.: Online clustering for evolving data streams with online anomaly detection. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10938, pp. 508\u2013521. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-93037-4_40"},{"key":"16_CR8","unstructured":"Dua, D., Graff, C.: UCI machine learning repository (2017). http:\/\/archive.ics.uci.edu\/ml"},{"key":"16_CR9","unstructured":"Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, vol. 96, pp. 226\u2013231 (1996)"},{"key":"16_CR10","doi-asserted-by":"crossref","unstructured":"Havens, T.C., Bezdek, J.C., Palaniswami, M.: Scalable single linkage hierarchical clustering for big data. In: 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 396\u2013401. IEEE (2013)","DOI":"10.1109\/ISSNIP.2013.6529823"},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"Kang, Z., Lin, Z., Zhu, X., Xu, W.: Structured graph learning for scalable subspace clustering: from single view to multiview. IEEE Trans. Cybernetics (2021)","DOI":"10.1109\/TCYB.2021.3061660"},{"key":"16_CR12","doi-asserted-by":"crossref","unstructured":"Kang, Z., Peng, C., Cheng, Q., Xu, Z.: Unified spectral clustering with optimal graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)","DOI":"10.1609\/aaai.v32i1.11613"},{"issue":"3","key":"16_CR13","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1007\/s00371-015-1192-x","volume":"33","author":"D Kumar","year":"2017","unstructured":"Kumar, D., Bezdek, J.C., Rajasegarar, S., Leckie, C., Palaniswami, M.: A visual-numeric approach to clustering and anomaly detection for trajectory data. Vis. Comput. 33(3), 265\u2013281 (2017)","journal-title":"Vis. Comput."},{"issue":"2","key":"16_CR14","first-page":"1","volume":"11","author":"D Kumar","year":"2016","unstructured":"Kumar, D., Bezdek, J.C., Rajasegarar, S., Palaniswami, M., Leckie, C., Chan, J., Gubbi, J.: Adaptive cluster tendency visualization and anomaly detection for streaming data. ACM Trans. Knowl. Discovery Data (TKDD) 11(2), 1\u201340 (2016)","journal-title":"ACM Trans. Knowl. Discovery Data (TKDD)"},{"key":"16_CR15","doi-asserted-by":"crossref","unstructured":"Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: 2021 AAAI Conference on Artificial Intelligence (AAAI) (2021)","DOI":"10.1609\/aaai.v35i10.17037"},{"issue":"5","key":"16_CR16","doi-asserted-by":"publisher","first-page":"1129","DOI":"10.1109\/TKDE.2017.2650229","volume":"29","author":"H Liu","year":"2017","unstructured":"Liu, H., Wu, J., Liu, T., Tao, D., Fu, Y.: Spectral ensemble clustering via weighted k-means: theoretical and practical evidence. IEEE Trans. Knowl. Data Eng. 29(5), 1129\u20131143 (2017)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"16_CR17","doi-asserted-by":"crossref","unstructured":"Qin, X., Ting, K.M., Zhu, Y., Lee, V.C.: Nearest-neighbour-induced isolation similarity and its impact on density-based clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4755\u20134762 (2019)","DOI":"10.1609\/aaai.v33i01.33014755"},{"issue":"12","key":"16_CR18","doi-asserted-by":"publisher","first-page":"5979","DOI":"10.1109\/TCYB.2020.2973137","volume":"51","author":"P Rathore","year":"2021","unstructured":"Rathore, P., Kumar, D., Bezdek, J.C., Rajasegarar, S., Palaniswami, M.: Visual structural assessment and anomaly detection for high-velocity data streams. IEEE Trans. Cybernetics 51(12), 5979\u20135992 (2021)","journal-title":"IEEE Trans. Cybernetics"},{"issue":"11","key":"16_CR19","doi-asserted-by":"publisher","first-page":"2321","DOI":"10.14778\/3551793.3551796","volume":"15","author":"KM Ting","year":"2022","unstructured":"Ting, K.M., Liu, Z., Zhang, H., Zhu, Y.: A new distributional treatment for time series and an anomaly detection investigation. Proc. VLDB Endowment 15(11), 2321\u20132333 (2022)","journal-title":"Proc. VLDB Endowment"},{"key":"16_CR20","unstructured":"Ting, K.M., Washio, T., Wells, J., Zhang, H., Zhu, Y.: Isolation kernel estimators. Knowledge and Information Systems, pp. 1\u201329 (2022)"},{"issue":"6","key":"16_CR21","doi-asserted-by":"publisher","first-page":"2282","DOI":"10.1007\/s10618-021-00785-1","volume":"35","author":"KM Ting","year":"2021","unstructured":"Ting, K.M., Wells, J.R., Washio, T.: Isolation kernel: the x factor in efficient and effective large scale online kernel learning. Data Min. Knowl. Disc. 35(6), 2282\u20132312 (2021)","journal-title":"Data Min. Knowl. Disc."},{"key":"16_CR22","doi-asserted-by":"crossref","unstructured":"Ting, K.M., Xu, B.C., Washio, T., Zhou, Z.H.: Isolation distributional kernel: a new tool for kernel based anomaly detection. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 198\u2013206 (2020)","DOI":"10.1145\/3394486.3403062"},{"issue":"2","key":"16_CR23","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1007\/s10994-018-5737-x","volume":"108","author":"KM Ting","year":"2019","unstructured":"Ting, K.M., Zhu, Y., Carman, M., Zhu, Y., Washio, T., Zhou, Z.H.: Lowest probability mass neighbour algorithms: relaxing the metric constraint in distance-based neighbourhood algorithms. Mach. Learn. 108(2), 331\u2013376 (2019)","journal-title":"Mach. Learn."},{"key":"16_CR24","doi-asserted-by":"crossref","unstructured":"Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073\u20131080 (2009)","DOI":"10.1145\/1553374.1553511"},{"key":"16_CR25","doi-asserted-by":"crossref","unstructured":"Wang, L., Nguyen, U.T., Bezdek, J.C., Leckie, C.A., Ramamohanarao, K.: ivat and avat: enhanced visual analysis for cluster tendency assessment. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 16\u201327. Springer (2010)","DOI":"10.1007\/978-3-642-13657-3_5"},{"key":"16_CR26","doi-asserted-by":"crossref","unstructured":"Yang, Y., Deng, S., Lu, J., Li, Y., Gong, Z., U, L.H., Hao, Z.: Graphlshc: towards large scale spectral hypergraph clustering. Inf. Sci. 544, 117\u2013134 (2021)","DOI":"10.1016\/j.ins.2020.07.018"},{"key":"16_CR27","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2021.107977","volume":"117","author":"Y Zhu","year":"2021","unstructured":"Zhu, Y., Ting, K.M., Carman, M.J., Angelova, M.: Cdf transform-and-shift: an effective way to deal with datasets of inhomogeneous cluster densities. Pattern Recogn. 117, 107977 (2021)","journal-title":"Pattern Recogn."}],"container-title":["Lecture Notes in Computer Science","Advances in Knowledge Discovery and Data Mining"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-33374-3_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T16:00:50Z","timestamp":1710345650000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-33374-3_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031333736","9783031333743"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-33374-3_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"27 May 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PAKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific-Asia Conference on Knowledge Discovery and Data Mining","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Osaka","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 May 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 May 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pakdd2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/pakdd2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"813","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"143","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}