{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T03:19:00Z","timestamp":1726197540699},"publisher-location":"Cham","reference-count":22,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031322952"},{"type":"electronic","value":"9783031322969"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-32296-9_3","type":"book-chapter","created":{"date-parts":[[2023,5,15]],"date-time":"2023-05-15T19:03:02Z","timestamp":1684177382000},"page":"36-51","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Unsupervised Framework for\u00a0Evaluating Structural Node Embeddings of\u00a0Graphs"],"prefix":"10.1007","author":[{"given":"Ashkan","family":"Dehghan","sequence":"first","affiliation":[]},{"given":"Kinga","family":"Siuta","sequence":"additional","affiliation":[]},{"given":"Agata","family":"Skorupka","sequence":"additional","affiliation":[]},{"given":"Andrei","family":"Betlen","sequence":"additional","affiliation":[]},{"given":"David","family":"Miller","sequence":"additional","affiliation":[]},{"given":"Bogumi\u0142","family":"Kami\u0144ski","sequence":"additional","affiliation":[]},{"given":"Pawe\u0142","family":"Pra\u0142at","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,16]]},"reference":[{"key":"3_CR1","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-33-4022-0","volume-title":"Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs","author":"M Aggarwal","year":"2021","unstructured":"Aggarwal, M., Murty, M.N.: Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs. Springer, Singapore (2021). https:\/\/doi.org\/10.1007\/978-981-33-4022-0"},{"key":"3_CR2","unstructured":"Ahmed, N.K., et al.: Learning role-based graph embeddings. arXiv preprint arXiv:1802.02896 (2018)"},{"issue":"3","key":"3_CR3","doi-asserted-by":"publisher","first-page":"626","DOI":"10.1007\/s10618-014-0365-y","volume":"29","author":"L Akoglu","year":"2015","unstructured":"Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29(3), 626\u2013688 (2015)","journal-title":"Data Min. Knowl. Disc."},{"key":"3_CR4","unstructured":"Chami, I., Abu-El-Haija, S., Perozzi, B., R\u00e9, C., Murphy, K.: Machine learning on graphs: a model and comprehensive taxonomy. arXiv preprint arXiv:2005.03675, p. 1 (2020)"},{"key":"3_CR5","unstructured":"Dehghan, A., Kami\u0144ski, B., Pra\u0142at, P.: Node structural representation learning using local signature matrix embedding [LSME] (2022, work in progress)"},{"key":"3_CR6","doi-asserted-by":"crossref","unstructured":"Dehghan-Kooshkghazi, A., Kami\u0144ski, B., Krai\u0144ski, \u0141., Pra\u0142at, P., Th\u00e9berge, F.: Evaluating node embeddings of complex networks. J. Complex Netw. 10(4), cnac030 (2022)","DOI":"10.1093\/comnet\/cnac030"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Donnat, C., Zitnik, M., Hallac, D., Leskovec, J.: Learning structural node embeddings via diffusion wavelets. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1320\u20131329 (2018)","DOI":"10.1145\/3219819.3220025"},{"key":"3_CR8","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1016\/j.socnet.2020.02.001","volume":"62","author":"MG Everett","year":"2020","unstructured":"Everett, M.G., Borgatti, S.P.: Unpacking Burt\u2019s constraint measure. Soc. Netw. 62, 50\u201357 (2020)","journal-title":"Soc. Netw."},{"key":"3_CR9","doi-asserted-by":"crossref","unstructured":"Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855\u2013864 (2016)","DOI":"10.1145\/2939672.2939754"},{"key":"3_CR10","unstructured":"Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584 (2017)"},{"key":"3_CR11","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/978-1-4419-8462-3_9","volume-title":"Social Network Data Analytics","author":"MA Hasan","year":"2011","unstructured":"Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 243\u2013275. Springer, Boston (2011). https:\/\/doi.org\/10.1007\/978-1-4419-8462-3_9"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Henderson, K., et al.: RolX: structural role extraction & mining in large graphs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1231\u20131239 (2012)","DOI":"10.1145\/2339530.2339723"},{"key":"3_CR13","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1017\/nws.2022.27","volume":"10","author":"B Kami\u0144ski","year":"2022","unstructured":"Kami\u0144ski, B., Krai\u0144ski, \u0141, Pra\u0142at, P., Th\u00e9berge, F.: A multi-purposed unsupervised framework for comparing embeddings of undirected and directed graphs. Netw. Sci. 10, 323\u2013346 (2022)","journal-title":"Netw. Sci."},{"key":"3_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1007\/978-3-030-48478-1_4","volume-title":"Algorithms and Models for the Web Graph","author":"B Kami\u0144ski","year":"2020","unstructured":"Kami\u0144ski, B., Pra\u0142at, P., Th\u00e9berge, F.: A scalable unsupervised framework for comparing graph embeddings. In: Kami\u0144ski, B., Pra\u0142at, P., Szufel, P. (eds.) WAW 2020. LNCS, vol. 12091, pp. 52\u201367. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-48478-1_4"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"Kami\u0144ski, B., Pra\u0142at, P., Th\u00e9berge, F.: An unsupervised framework for comparing graph embeddings. J. Complex Netw. 8(5), cnz043 (2020)","DOI":"10.1093\/comnet\/cnz043"},{"key":"3_CR16","doi-asserted-by":"publisher","DOI":"10.1201\/9781003218869","volume-title":"Mining Complex Networks","author":"B Kami\u0144ski","year":"2021","unstructured":"Kami\u0144ski, B., Pra\u0142at, P., Th\u00e9berge, F.: Mining Complex Networks. Chapman and Hall\/CRC, London (2021)"},{"key":"3_CR17","unstructured":"Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)"},{"key":"3_CR18","unstructured":"Neville, J., Jensen, D.: Iterative classification in relational data. In: Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data, pp. 13\u201320 (2000)"},{"key":"3_CR19","series-title":"Studies in Computational Intelligence","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1007\/978-3-031-21131-7_17","volume-title":"Complex Networks and Their Applications XI","author":"B Pankratz","year":"2022","unstructured":"Pankratz, B., Kami\u0144ski, B., Pra\u0142at, P.: Community detection supported by node embeddings. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds.) Complex Networks and Their Applications XI. Studies in Computational Intelligence, vol. 1078, pp. 221\u2013232. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-21131-7_17"},{"key":"3_CR20","doi-asserted-by":"crossref","unstructured":"Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701\u2013710 (2014)","DOI":"10.1145\/2623330.2623732"},{"key":"3_CR21","unstructured":"Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385\u2013394 (2017)"},{"key":"3_CR22","doi-asserted-by":"crossref","unstructured":"Stolman, A., Levy, C., Seshadhri, C., Sharma, A.: Classic graph structural features outperform factorization-based graph embedding methods on community labeling. In: Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), pp. 388\u2013396. SIAM (2022)","DOI":"10.1137\/1.9781611977172.44"}],"container-title":["Lecture Notes in Computer Science","Algorithms and Models for the Web Graph"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-32296-9_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T14:40:45Z","timestamp":1710254445000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-32296-9_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031322952","9783031322969"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-32296-9_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"16 May 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"WAW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Algorithms and Models for the Web-Graph","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Toronto, ON","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 May 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 May 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"waw2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/math.ryerson.ca\/waw2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"57% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"More than 3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}