{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T03:54:35Z","timestamp":1742961275215,"version":"3.40.3"},"publisher-location":"Cham","reference-count":38,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031314377"},{"type":"electronic","value":"9783031314384"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-31438-4_3","type":"book-chapter","created":{"date-parts":[[2023,4,26]],"date-time":"2023-04-26T08:02:53Z","timestamp":1682496173000},"page":"32-48","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Evidential Deep Learning for\u00a0Class-Incremental Semantic Segmentation"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8677-8715","authenticated-orcid":false,"given":"Karl","family":"Holmquist","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5094-5844","authenticated-orcid":false,"given":"Lena","family":"Klas\u00e9n","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6096-3648","authenticated-orcid":false,"given":"Michael","family":"Felsberg","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,27]]},"reference":[{"key":"3_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1007\/978-3-030-01219-9_9","volume-title":"Computer Vision \u2013 ECCV 2018","author":"R Aljundi","year":"2018","unstructured":"Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to Forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144\u2013161. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01219-9_9"},{"key":"3_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/978-3-030-01258-8_15","volume-title":"Computer Vision \u2013 ECCV 2018","author":"FM Castro","year":"2018","unstructured":"Castro, F.M., Mar\u00edn-Jim\u00e9nez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241\u2013257. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01258-8_15"},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)","DOI":"10.1109\/CVPR42600.2020.00925"},{"issue":"4","key":"3_CR4","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"LC Chen","year":"2017","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834\u2013848 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"3_CR5","unstructured":"Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)"},{"key":"3_CR6","doi-asserted-by":"crossref","unstructured":"Choi, Y., El-Khamy, M., Lee, J.: Dual-teacher class-incremental learning with data-free generative replay. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3543\u20133552 (2021)","DOI":"10.1109\/CVPRW53098.2021.00393"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Douillard, A., Chen, Y., Dapogny, A., Cord, M.: Plop: Learning without forgetting for continual semantic segmentation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 4040\u20134050 (2021)","DOI":"10.1109\/CVPR46437.2021.00403"},{"key":"3_CR8","unstructured":"Drummond, N., Shearer, R.: The open world assumption. In: eSI Workshop: The Closed World of Databases meets the Open World of the Semantic Web, vol. 15 (2006)"},{"key":"3_CR9","unstructured":"Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC 2012) Results. http:\/\/www.pascal-network.org\/challenges\/VOC\/voc2012\/workshop\/index.html"},{"key":"3_CR10","doi-asserted-by":"crossref","unstructured":"He, C., Wang, R., Chen, X.: A tale of two cils: The connections between class incremental learning and class imbalanced learning, and beyond. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3559\u20133569 (2021)","DOI":"10.1109\/CVPRW53098.2021.00395"},{"key":"3_CR11","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)"},{"issue":"13","key":"3_CR12","doi-asserted-by":"publisher","first-page":"3521","DOI":"10.1073\/pnas.1611835114","volume":"114","author":"J Kirkpatrick","year":"2017","unstructured":"Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521\u20133526 (2017)","journal-title":"Proc. Natl. Acad. Sci."},{"key":"3_CR13","first-page":"1097","volume":"25","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097\u20131105 (2012)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"3_CR14","unstructured":"Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., D\u0131az-Rodr\u0131guez, N.: Continual learning for robotics, pp. 1\u201334. arXiv preprint arXiv:1907.00182 (2019)"},{"issue":"12","key":"3_CR15","doi-asserted-by":"publisher","first-page":"2935","DOI":"10.1109\/TPAMI.2017.2773081","volume":"40","author":"Z Li","year":"2017","unstructured":"Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935\u20132947 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"Liu, X., et al.: Generative feature replay for class-incremental learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 226\u2013227 (2020)","DOI":"10.1109\/CVPRW50498.2020.00121"},{"key":"3_CR17","unstructured":"Liu, X., Yang, H., Ravichandran, A., Bhotika, R., Soatto, S.: Continual universal object detection. arXiv preprint arXiv:2002.05347 (2020)"},{"key":"3_CR18","doi-asserted-by":"crossref","unstructured":"Liu, Y., Su, Y., Liu, A.A., Schiele, B., Sun, Q.: Mnemonics training: Multi-class incremental learning without forgetting. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12245\u201312254 (2020)","DOI":"10.1109\/CVPR42600.2020.01226"},{"key":"3_CR19","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"3_CR20","doi-asserted-by":"crossref","unstructured":"Maracani, A., Michieli, U., Toldo, M., Zanuttigh, P.: Recall: Replay-based continual learning in semantic segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 7026\u20137035 (October 2021)","DOI":"10.1109\/ICCV48922.2021.00694"},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"Mi, F., Kong, L., Lin, T., Yu, K., Faltings, B.: Generalized class incremental learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (June 2020)","DOI":"10.1109\/CVPRW50498.2020.00128"},{"key":"3_CR22","doi-asserted-by":"crossref","unstructured":"Michieli, U., Zanuttigh, P.: Incremental learning techniques for semantic segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision Workshops (2019)","DOI":"10.1109\/ICCVW.2019.00400"},{"key":"3_CR23","doi-asserted-by":"crossref","unstructured":"Michieli, U., Zanuttigh, P.: Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1114\u20131124 (June 2021)","DOI":"10.1109\/CVPR46437.2021.00117"},{"key":"3_CR24","doi-asserted-by":"crossref","unstructured":"Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001\u20132010 (2017)","DOI":"10.1109\/CVPR.2017.587"},{"key":"3_CR25","unstructured":"\u015eensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: Advances in Neural Information Processing Systems (2018)"},{"key":"3_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1007\/978-3-030-58529-7_16","volume-title":"Computer Vision \u2013 ECCV 2020","author":"X Tao","year":"2020","unstructured":"Tao, X., Chang, X., Hong, X., Wei, X., Gong, Y.: Topology-preserving class-incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 254\u2013270. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58529-7_16"},{"key":"3_CR27","doi-asserted-by":"crossref","unstructured":"Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12183\u201312192 (2020)","DOI":"10.1109\/CVPR42600.2020.01220"},{"key":"3_CR28","unstructured":"Wentao Bao, Q.Y., Kong, Y.: Evidential deep learning for open set action recognition. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV) (2021)"},{"key":"3_CR29","unstructured":"Wu, Y., et al.: Incremental classifier learning with generative adversarial networks. arXiv preprint arXiv:1802.00853 (2018)"},{"key":"3_CR30","doi-asserted-by":"crossref","unstructured":"Xiang, Y., Fu, Y., Ji, P., Huang, H.: Incremental learning using conditional adversarial networks. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 6619\u20136628 (2019)","DOI":"10.1109\/ICCV.2019.00672"},{"key":"3_CR31","doi-asserted-by":"crossref","unstructured":"Yu, L., et al.: Semantic drift compensation for class-incremental learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)","DOI":"10.1109\/CVPR42600.2020.00701"},{"key":"3_CR32","doi-asserted-by":"crossref","unstructured":"Zhang, B.F., Su, J.S., Xu, X.: A class-incremental learning method for multi-class support vector machines in text classification. In: 2006 International Conference on Machine Learning and Cybernetics, pp. 2581\u20132585. IEEE (2006)","DOI":"10.1109\/ICMLC.2006.258853"},{"key":"3_CR33","doi-asserted-by":"publisher","first-page":"182548","DOI":"10.1109\/ACCESS.2019.2960321","volume":"7","author":"H Zhang","year":"2019","unstructured":"Zhang, H., Zhu, M., Zhang, J., Zhuo, L.: Long-term visual object tracking via continual learning. IEEE Access 7, 182548\u2013182558 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2019.2960321","journal-title":"IEEE Access"},{"key":"3_CR34","doi-asserted-by":"crossref","unstructured":"Zhang, J., et al.: Class-incremental learning via deep model consolidation. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV) (March 2020)","DOI":"10.1109\/WACV45572.2020.9093365"},{"key":"3_CR35","doi-asserted-by":"crossref","unstructured":"Zhao, B., Xiao, X., Gan, G., Zhang, B., Xia, S.T.: Maintaining discrimination and fairness in class incremental learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)","DOI":"10.1109\/CVPR42600.2020.01322"},{"key":"3_CR36","doi-asserted-by":"crossref","unstructured":"Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881\u20136890 (2021)","DOI":"10.1109\/CVPR46437.2021.00681"},{"issue":"3","key":"3_CR37","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1007\/s11263-018-1140-0","volume":"127","author":"B Zhou","year":"2019","unstructured":"Zhou, B., et al.: Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vision 127(3), 302\u2013321 (2019)","journal-title":"Int. J. Comput. Vision"},{"key":"3_CR38","first-page":"3833","volume":"33","author":"B Zoph","year":"2020","unstructured":"Zoph, B., et al.: Rethinking pre-training and self-training. Adv. Neural. Inf. Process. Syst. 33, 3833\u20133845 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."}],"container-title":["Lecture Notes in Computer Science","Image Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-31438-4_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,29]],"date-time":"2023-05-29T09:02:24Z","timestamp":1685350944000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-31438-4_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031314377","9783031314384"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-31438-4_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"27 April 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SCIA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Scandinavian Conference on Image Analysis","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lapland","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Finland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 April 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 April 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"scia2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/scia2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT 3","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"108","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"67","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"62% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}