{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T02:47:20Z","timestamp":1726195640405},"publisher-location":"Cham","reference-count":11,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031311826"},{"type":"electronic","value":"9783031311833"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-31183-3_24","type":"book-chapter","created":{"date-parts":[[2023,4,29]],"date-time":"2023-04-29T09:02:29Z","timestamp":1682758949000},"page":"291-302","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Real-Time Monitoring Tool for\u00a0SNN Hardware Architecture"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3382-2724","authenticated-orcid":false,"given":"Mireya","family":"Zapata","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3661-1172","authenticated-orcid":false,"given":"Vanessa","family":"Vargas","sequence":"additional","affiliation":[]},{"given":"Ariel","family":"Cagua","sequence":"additional","affiliation":[]},{"given":"Daniela","family":"Alvarez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0403-7324","authenticated-orcid":false,"given":"Bernardo","family":"Vallejo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5905-9179","authenticated-orcid":false,"given":"Jordi","family":"Madrenas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,30]]},"reference":[{"key":"24_CR1","unstructured":"Frenkel, C., Bol, D., Indiveri, G.: Bottom-up and top-down neural processing systems design: neuromorphic intelligence as the convergence of natural and artificial intelligence (2021). arXiv preprint arXiv:2106.01288"},{"key":"24_CR2","doi-asserted-by":"publisher","unstructured":"Camu\u00f1as-Mesa, L.A., Linares-Barranco, B., Serrano-Gotarredona, T.: Neuromorphic spiking neural networks and their memristor-CMOS hardware implementations. Materials 12(17), 2745 (2019). https:\/\/doi.org\/10.3390\/ma12172745","DOI":"10.3390\/ma12172745"},{"issue":"March","key":"24_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3389\/fnins.2021.638474","volume":"15","author":"W Guo","year":"2021","unstructured":"Guo, W., Fouda, M.E., Eltawil, A.M., Salama, K.N.: Neural coding in spiking neural networks: a comparative study for robust neuromorphic systems. Front. Neurosci. 15(March), 1\u201321 (2021). https:\/\/doi.org\/10.3389\/fnins.2021.638474","journal-title":"Front. Neurosci."},{"key":"24_CR4","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1007\/978-3-030-66770-214","volume":"1325","author":"P Spilger","year":"2020","unstructured":"Spilger, P., et al.: hxtorch: PyTorch for BrainScaleS-2: Perceptrons on analog neuromorphic hardware. Commun. Comput. Inf. Sci. 1325, 189\u2013200 (2020). https:\/\/doi.org\/10.1007\/978-3-030-66770-214","journal-title":"Commun. Comput. Inf. Sci."},{"issue":"5","key":"24_CR5","doi-asserted-by":"publisher","first-page":"699","DOI":"10.1109\/JPROC.2014.2313565","volume":"102","author":"BV Benjamin","year":"2014","unstructured":"Benjamin, B.V., et al.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699\u2013716 (2014). https:\/\/doi.org\/10.1109\/JPROC.2014.2313565","journal-title":"Proc. IEEE"},{"issue":"5","key":"24_CR6","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1109\/MC.2019.2903009","volume":"52","author":"MV Debole","year":"2019","unstructured":"Debole, M.V., et al.: TrueNorth: accelerating from zero to 64 million neurons in 10 years. Computer 52(5), 20\u201329 (2019). https:\/\/doi.org\/10.1109\/MC.2019.2903009","journal-title":"Computer"},{"issue":"5","key":"24_CR7","doi-asserted-by":"publisher","first-page":"652","DOI":"10.1109\/JPROC.2014.2304638","volume":"102","author":"SB Furber","year":"2014","unstructured":"Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The SpiNNaker project. Proc. IEEE 102(5), 652\u2013665 (2014). https:\/\/doi.org\/10.1109\/JPROC.2014.2304638","journal-title":"Proc. IEEE"},{"key":"24_CR8","doi-asserted-by":"publisher","unstructured":"Orchard, G., et al.: Efficient neuromorphic signal processing with loihi 2. In: IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation, 2021-October, no. 1, pp. 254\u2013259 (2021). https:\/\/doi.org\/10.1109\/SiPS52927.2021.00053","DOI":"10.1109\/SiPS52927.2021.00053"},{"key":"24_CR9","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1007\/978-3-030-68017-6_73","volume-title":"Intelligent Human Systems Integration 2021","author":"M Zapata","year":"2021","unstructured":"Zapata, M., Vallejo-Mancero, B., Remache-Vinueza, B., Madrenas, J.: Monitoring implementation for spiking neural networks architecture on Zynq-7000 all programmable SoCs. In: Russo, D., Ahram, T., Karwowski, W., Di Bucchianico, G., Taiar, R. (eds.) IHSI 2021. AISC, vol. 1322, pp. 489\u2013495. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-68017-6_73"},{"key":"24_CR10","doi-asserted-by":"publisher","unstructured":"Zapata, M., Jadan, J., Madrenas, J.: Efficient configuration for a scalable spiking neural network platform by means of a synchronous address event representation bus. In: 2018 NASA\/ESA Conference on Adaptive Hardware and Systems (AHS), 2018, pp. 241\u2013248 (2018). https:\/\/doi.org\/10.1109\/AHS.2018.8541463","DOI":"10.1109\/AHS.2018.8541463"},{"key":"24_CR11","doi-asserted-by":"publisher","unstructured":"Oltra, J.A., Madrenas, J., Zapata, M., et al.: Hardware-software co-design for efficient and scalable real-time emulation of SNNs on the edge. In: IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1\u20135 (2021). https:\/\/doi.org\/10.1109\/ISCAS51556.2021.9401615","DOI":"10.1109\/ISCAS51556.2021.9401615"}],"container-title":["Communications in Computer and Information Science","Artificial Life and Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-31183-3_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,8]],"date-time":"2023-11-08T06:07:16Z","timestamp":1699423636000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-31183-3_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031311826","9783031311833"],"references-count":11,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-31183-3_24","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"30 April 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"WIVACE","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italian Workshop on Artificial Life and Evolutionary Computation","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gaeta","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"wivace2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/wivace2022.unicas.it\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"47% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}