{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T21:57:52Z","timestamp":1742939872259,"version":"3.40.3"},"publisher-location":"Cham","reference-count":12,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031306747"},{"type":"electronic","value":"9783031306754"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-30675-4_2","type":"book-chapter","created":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T10:02:24Z","timestamp":1681466544000},"page":"21-30","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["SRACas: A Social Role-Aware Graph Neural Network-Based Model for\u00a0Popularity Prediction of\u00a0Information Cascades"],"prefix":"10.1007","author":[{"given":"Zhenhua","family":"Huang","sequence":"first","affiliation":[]},{"given":"Yuhang","family":"He","sequence":"additional","affiliation":[]},{"given":"Shaojie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zhenyu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ruifeng","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Sharad","family":"Merothra","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,15]]},"reference":[{"issue":"10","key":"2_CR1","doi-asserted-by":"publisher","first-page":"P10008","DOI":"10.1088\/1742-5468\/2008\/10\/P10008","volume":"2008","author":"DB Vincent","year":"2008","unstructured":"Vincent, D.B., Jean-Loup, G., Renaud, L., Etienne, L.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)","journal-title":"J. Stat. Mech: Theory Exp."},{"key":"2_CR2","doi-asserted-by":"crossref","unstructured":"Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: Deephawkes: bridging the gap between prediction and understanding of information cascades. In: Proceedings of CIKM, pp. 1149\u20131158 (2017)","DOI":"10.1145\/3132847.3132973"},{"key":"2_CR3","unstructured":"Chen, X., Zhou, F., Zhang, K., Goce, T., Zhong, T., Zhang, F.: Information diffusion prediction via recurrent cascades convolution. In: Proceedings of ICDE"},{"key":"2_CR4","unstructured":"Matthias, F., Jan, E.L.: Fast graph representation learning with PyTorch Geometric. In: Proceedings of ICLR Workshop on RLGM (2019)"},{"key":"2_CR5","doi-asserted-by":"crossref","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the EMNLP, pp. 1746\u20131751, Doha, Qatar, October 2014","DOI":"10.3115\/v1\/D14-1181"},{"key":"2_CR6","unstructured":"Cheng, L., Jiaqi, M., Xiaoxiao, G., Qiaozhu, M.: Deepcas: an end-to-end predictor of information cascades. In: Proceedings of the 26th WWW, pp. 577\u2013586 (2017)"},{"key":"2_CR7","unstructured":"Petar, V., Guillem, C., Arantxa, C., Adriana, R., Pietro, L., Yoshua, B.: Graph attention networks. Proceedings of ICLR (2018)"},{"key":"2_CR8","doi-asserted-by":"crossref","unstructured":"Wang, J., Zheng, V., Liu, Z., Chang, K.: Topological recurrent neural network for diffusion prediction. In: Proceedings of ICDM, pp. 475\u2013484. IEEE (2017)","DOI":"10.1109\/ICDM.2017.57"},{"key":"2_CR9","unstructured":"Xu, X., Zhou, F., Zhang, K., Liu, S., Goce, T.: Casflow: exploring hierarchical structures and propagation uncertainty for cascade prediction. TKDE (2021)"},{"key":"2_CR10","doi-asserted-by":"crossref","unstructured":"Yang, Y., et al.: Rain: social role-aware information diffusion. In: Proceedings of AAAI (2015)","DOI":"10.1609\/aaai.v29i1.9164"},{"key":"2_CR11","unstructured":"Fan, Z., Xu, X., Goce, T., Zhang, K.: A survey of information cascade analysis: Models, predictions, and recent advances. ACM Computing Surveys (2021)"},{"key":"2_CR12","doi-asserted-by":"crossref","unstructured":"Zhou, F., Xu, X., Zhang, K., Goce, T., Zhong, T.: Variational information diffusion for probabilistic cascades prediction. In: IEEE INFOCOM, pp. 1618\u20131627 (2020)","DOI":"10.1109\/INFOCOM41043.2020.9155349"}],"container-title":["Lecture Notes in Computer Science","Database Systems for Advanced Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-30675-4_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T12:07:13Z","timestamp":1710245233000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-30675-4_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031306747","9783031306754"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-30675-4_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"15 April 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DASFAA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Database Systems for Advanced Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tianjin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 April 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 April 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dasfaa2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.tjudb.cn\/dasfaa2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"652","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"125","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"66","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7.3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}