{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T02:21:54Z","timestamp":1726194114510},"publisher-location":"Cham","reference-count":29,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031306716"},{"type":"electronic","value":"9783031306723"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-30672-3_2","type":"book-chapter","created":{"date-parts":[[2023,4,13]],"date-time":"2023-04-13T07:10:49Z","timestamp":1681369849000},"page":"21-37","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["HIT: Learning a\u00a0Hierarchical Tree-Based Model with\u00a0Variable-Length Layers for\u00a0Recommendation Systems"],"prefix":"10.1007","author":[{"given":"Anran","family":"Xu","sequence":"first","affiliation":[]},{"given":"Shuo","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhenzhe","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"LingLing","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Fan","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Guihai","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Jiang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,14]]},"reference":[{"key":"2_CR1","doi-asserted-by":"crossref","unstructured":"Abdollahpouri, H.: Popularity bias in ranking and recommendation. In: AAAI\/ACM Conference on AI, Ethic and Society (AIES), pp. 529\u2013530 (2019)","DOI":"10.1145\/3306618.3314309"},{"key":"2_CR2","doi-asserted-by":"crossref","unstructured":"Abdollahpouri, H., Burke, R., Mobasher, B.: Controlling popularity bias in learning-to-rank recommendation. In: 11th ACM Conference on Recommender Systems (RecSys), pp. 42\u201346 (2017)","DOI":"10.1145\/3109859.3109912"},{"key":"2_CR3","doi-asserted-by":"crossref","unstructured":"Chen, Z., Xiao, R., Li, C., Ye, G., Sun, H., Deng, H.: ESAM: discriminative domain adaptation with non-displayed items to improve long-tail performance. In: The 43rd International ACM SIGIR conference on research and development in Information Retrieval (SIGIR), pp. 579\u2013588 (2020)","DOI":"10.1145\/3397271.3401043"},{"key":"2_CR4","doi-asserted-by":"crossref","unstructured":"Chu, W., et al.: A case study of behavior-driven conjoint analysis on yahoo! Front page today module. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 1097\u20131104 (2009)","DOI":"10.1145\/1557019.1557138"},{"key":"2_CR5","doi-asserted-by":"crossref","unstructured":"Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems (RecSys), pp. 191\u2013198 (2016)","DOI":"10.1145\/2959100.2959190"},{"key":"2_CR6","doi-asserted-by":"crossref","unstructured":"Gao, W., et al.: Learning an end-to-end structure for retrieval in large-scale recommendations. In: The 30th ACM International Conference on Information and Knowledge Management (CIKM) (2021)","DOI":"10.1145\/3459637.3482362"},{"key":"2_CR7","doi-asserted-by":"crossref","unstructured":"Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1725\u20131731 (2017)","DOI":"10.24963\/ijcai.2017\/239"},{"issue":"4","key":"2_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2827872","volume":"5","author":"FM Harper","year":"2015","unstructured":"Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. TiiS 5(4), 1\u201319 (2015)","journal-title":"TiiS"},{"key":"2_CR9","doi-asserted-by":"crossref","unstructured":"He, M., Li, C., Hu, X., Chen, X., Wang, J.: Mitigating popularity bias in recommendation via counterfactual inference. In: Database Systems for Advanced Applications (DASFAA), pp. 377\u2013388 (2022)","DOI":"10.1007\/978-3-031-00129-1_32"},{"key":"2_CR10","doi-asserted-by":"crossref","unstructured":"Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Conference on Information and Knowledge Management (CIKM), pp. 2333\u20132338 (2013)","DOI":"10.1145\/2505515.2505665"},{"issue":"4","key":"2_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1944339.1944341","volume":"10","author":"N Hurley","year":"2011","unstructured":"Hurley, N., Zhang, M.: Novelty and diversity in top-N recommendation-analysis and evaluation. TOIT 10(4), 1\u201330 (2011)","journal-title":"TOIT"},{"issue":"1","key":"2_CR12","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1109\/TPAMI.2010.57","volume":"33","author":"H Jegou","year":"2010","unstructured":"Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. TPAMI 33(1), 117\u2013128 (2010)","journal-title":"TPAMI"},{"key":"2_CR13","unstructured":"Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Correcting popularity bias by enhancing recommendation neutrality. In: The 8th ACM Conference on Recommender Systems (RecSys), Posters (2014)"},{"key":"2_CR14","doi-asserted-by":"crossref","unstructured":"Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web (WWW), pp. 661\u2013670 (2010)","DOI":"10.1145\/1772690.1772758"},{"key":"2_CR15","doi-asserted-by":"crossref","unstructured":"Ma, X., et al.: Entire space multi-task model: An effective approach for estimating post-click conversion rate. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR), pp. 1137\u20131140 (2018)","DOI":"10.1145\/3209978.3210104"},{"issue":"4","key":"2_CR16","doi-asserted-by":"publisher","first-page":"824","DOI":"10.1109\/TPAMI.2018.2889473","volume":"42","author":"YA Malkov","year":"2018","unstructured":"Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. TPAMI 42(4), 824\u2013836 (2018)","journal-title":"TPAMI"},{"key":"2_CR17","doi-asserted-by":"crossref","unstructured":"Park, Y.J., Tuzhilin, A.: The long tail of recommender systems and how to leverage it. In: ACM Conference on Recommender Systems (RecSys), pp. 11\u201318 (2008)","DOI":"10.1145\/1454008.1454012"},{"key":"2_CR18","doi-asserted-by":"crossref","unstructured":"Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining (ICDM), pp. 995\u20131000 (2010)","DOI":"10.1109\/ICDM.2010.127"},{"key":"2_CR19","doi-asserted-by":"crossref","unstructured":"Shi, L.: Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based recommendation approach. In: Proceedings of the 7th ACM Conference on Recommender Systems (RecSys), pp. 57\u201364 (2013)","DOI":"10.1145\/2507157.2507165"},{"key":"2_CR20","unstructured":"Shrivastava, A., Li, P.: Asymmetric LSH (ALSH) for sublinear time maximum inner product search (MIPS). In: Advances in Neural Information Processing Systems (NeurIPS), pp. 2321\u20132329 (2014)"},{"key":"2_CR21","doi-asserted-by":"crossref","unstructured":"Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. In: Proceedings of the ADKDD, pp. 1\u20137 (2017)","DOI":"10.1145\/3124749.3124754"},{"key":"2_CR22","doi-asserted-by":"crossref","unstructured":"Xie, R., Qiu, Z., Rao, J., Liu, Y., Zhang, B., Lin, L.: Internal and contextual attention network for cold-start multi-channel matching in recommendation. In: Proceedings of the 29h International Joint Conference on Artificial Intelligence (IJCAI), pp. 2732\u20132738 (2020)","DOI":"10.24963\/ijcai.2020\/379"},{"key":"2_CR23","doi-asserted-by":"crossref","unstructured":"Yang, L., Cui, Y., Xuan, Y., Wang, C., Belongie, S., Estrin, D.: Unbiased offline recommender evaluation for missing-not-at-random implicit feedback. In: Proceedings of the 12th ACM Conference on Recommender Systems (RecSys), pp. 279\u2013287 (2018)","DOI":"10.1145\/3240323.3240355"},{"issue":"9","key":"2_CR24","doi-asserted-by":"publisher","first-page":"896","DOI":"10.14778\/2311906.2311916","volume":"5","author":"H Yin","year":"2012","unstructured":"Yin, H., Cui, B., Li, J., Yao, J., Chen, C.: Challenging the long tail recommendation. Proc. VLDB Endow. 5(9), 896\u2013907 (2012)","journal-title":"Proc. VLDB Endow."},{"key":"2_CR25","doi-asserted-by":"crossref","unstructured":"Zheng, Y., Gao, C., Li, X., He, X., Li, Y., Jin, D.: Disentangling user interest and popularity bias for recommendation with causal embedding. arXiv preprint arXiv:2006.11011 (2020)","DOI":"10.1145\/3442381.3449788"},{"key":"2_CR26","doi-asserted-by":"crossref","unstructured":"Zhou, G., et al.: Deep interest network for click-through rate prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (SIGKDD), pp. 1059\u20131068 (2018)","DOI":"10.1145\/3219819.3219823"},{"key":"2_CR27","unstructured":"Zhu, H., et al.: Joint optimization of tree-based index and deep model for recommender systems. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 3971\u20133980 (2019)"},{"key":"2_CR28","doi-asserted-by":"crossref","unstructured":"Zhu, H., et al.: Learning tree-based deep model for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (SIGKDD), pp. 1079\u20131088 (2018)","DOI":"10.1145\/3219819.3219826"},{"key":"2_CR29","unstructured":"Zhuo, J., Xu, Z., Dai, W., Zhu, H., Li, H., Xu, J., Gai, K.: Learning optimal tree models under beam search. In: International Conference on Machine Learning (ICML), pp. 11650\u201311659 (2020)"}],"container-title":["Lecture Notes in Computer Science","Database Systems for Advanced Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-30672-3_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T13:21:30Z","timestamp":1710249690000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-30672-3_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031306716","9783031306723"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-30672-3_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"14 April 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DASFAA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Database Systems for Advanced Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tianjin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 April 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 April 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dasfaa2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.tjudb.cn\/dasfaa2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"652","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"125","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"66","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7.3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}