{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T05:30:28Z","timestamp":1743053428809,"version":"3.40.3"},"publisher-location":"Cham","reference-count":23,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031295720"},{"type":"electronic","value":"9783031295737"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-29573-7_20","type":"book-chapter","created":{"date-parts":[[2023,3,28]],"date-time":"2023-03-28T13:03:02Z","timestamp":1680008582000},"page":"308-323","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["To Bias or\u00a0Not to\u00a0Bias: Probabilistic Initialisation for\u00a0Evolving Dispatching Rules"],"prefix":"10.1007","author":[{"given":"Marko","family":"\u0110urasevi\u0107","sequence":"first","affiliation":[]},{"given":"Francisco Javier","family":"Gil-Gala","sequence":"additional","affiliation":[]},{"given":"Domagoj","family":"Jakobovi\u0107","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,29]]},"reference":[{"issue":"1","key":"20_CR1","doi-asserted-by":"publisher","first-page":"110","DOI":"10.1109\/TEVC.2015.2429314","volume":"20","author":"J Branke","year":"2016","unstructured":"Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110\u2013124 (2016). https:\/\/doi.org\/10.1109\/TEVC.2015.2429314","journal-title":"IEEE Trans. Evol. Comput."},{"key":"20_CR2","doi-asserted-by":"publisher","first-page":"100944","DOI":"10.1016\/j.swevo.2021.100944","volume":"66","author":"FJ Gil-Gala","year":"2021","unstructured":"Gil-Gala, F.J., Sierra, M.R., Menc\u00eda, C., Varela, R.: Genetic programming with local search to evolve priority rules for scheduling jobs on a machine with time-varying capacity. Swarm Evol. Comput. 66, 100944 (2021). https:\/\/doi.org\/10.1016\/j.swevo.2021.100944","journal-title":"Swarm Evol. Comput."},{"key":"20_CR3","doi-asserted-by":"publisher","unstructured":"Kazimipour, B., Li, X., Qin, A.K.: A review of population initialization techniques for evolutionary algorithms. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2585\u20132592 (2014). https:\/\/doi.org\/10.1109\/CEC.2014.6900618","DOI":"10.1109\/CEC.2014.6900618"},{"issue":"2","key":"20_CR4","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1007\/s10710-013-9205-x","volume":"15","author":"K Kim","year":"2013","unstructured":"Kim, K., Shan, Y., Nguyen, X.H., McKay, R.I.: Probabilistic model building in genetic programming: a critical review. Genet. Program Evolvable Mach. 15(2), 115\u2013167 (2013). https:\/\/doi.org\/10.1007\/s10710-013-9205-x","journal-title":"Genet. Program Evolvable Mach."},{"issue":"5","key":"20_CR5","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1109\/TETCI.2017.2743758","volume":"1","author":"Y Mei","year":"2017","unstructured":"Mei, Y., Nguyen, S., Xue, B., Zhang, M.: An efficient feature selection algorithm for evolving job shop scheduling rules with genetic programming. IEEE Trans. Emerg. Top. Comput. Intell 1(5), 339\u2013353 (2017). https:\/\/doi.org\/10.1109\/TETCI.2017.2743758","journal-title":"IEEE Trans. Emerg. Top. Comput. Intell"},{"issue":"1","key":"20_CR6","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1007\/s40747-017-0036-x","volume":"3","author":"S Nguyen","year":"2017","unstructured":"Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling: a survey with a unified framework. Complex Intell. Syst. 3(1), 41\u201366 (2017). https:\/\/doi.org\/10.1007\/s40747-017-0036-x","journal-title":"Complex Intell. Syst."},{"issue":"9","key":"20_CR7","doi-asserted-by":"publisher","first-page":"2951","DOI":"10.1109\/TCYB.2016.2562674","volume":"47","author":"S Nguyen","year":"2017","unstructured":"Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted genetic programming with simplified models for automated design of dispatching rules. IEEE Trans. Cybern. 47(9), 2951\u20132965 (2017). https:\/\/doi.org\/10.1109\/TCYB.2016.2562674","journal-title":"IEEE Trans. Cybern."},{"key":"20_CR8","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4614-2361-4","volume-title":"Scheduling","author":"ML Pinedo","year":"2012","unstructured":"Pinedo, M.L.: Scheduling. Springer, USA (2012). https:\/\/doi.org\/10.1007\/978-1-4614-2361-4"},{"key":"20_CR9","doi-asserted-by":"publisher","unstructured":"Planini\u0107, L., \u0110urasevi\u0107, M., Jakobovi\u0107, D.: On the application of $$\\epsilon $$-lexicase selection in the generation of dispatching rules. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 2125\u20132132 (2021). https:\/\/doi.org\/10.1109\/CEC45853.2021.9504982","DOI":"10.1109\/CEC45853.2021.9504982"},{"key":"20_CR10","volume-title":"A Field Guide to Genetic Programming","author":"R Poli","year":"2008","unstructured":"Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises Ltd., UK (2008)"},{"issue":"1","key":"20_CR11","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1007\/s10710-017-9302-3","volume":"19","author":"M \u0110urasevi\u0107","year":"2017","unstructured":"\u0110urasevi\u0107, M., Jakobovi\u0107, D.: Comparison of ensemble learning methods for creating ensembles of dispatching rules for the unrelated machines environment. Genet. Program Evolvable Mach. 19(1), 53\u201392 (2017). https:\/\/doi.org\/10.1007\/s10710-017-9302-3","journal-title":"Genet. Program Evolvable Mach."},{"key":"20_CR12","doi-asserted-by":"publisher","first-page":"555","DOI":"10.1016\/j.eswa.2018.06.053","volume":"113","author":"M \u0110urasevi\u0107","year":"2018","unstructured":"\u0110urasevi\u0107, M., Jakobovi\u0107, D.: A survey of dispatching rules for the dynamic unrelated machines environment. Expert Syst. Appl. 113, 555\u2013569 (2018). https:\/\/doi.org\/10.1016\/j.eswa.2018.06.053","journal-title":"Expert Syst. Appl."},{"issue":"6","key":"20_CR13","doi-asserted-by":"publisher","first-page":"959","DOI":"10.1007\/s10732-019-09416-x","volume":"25","author":"M \u0110urasevi\u0107","year":"2019","unstructured":"\u0110urasevi\u0107, M., Jakobovi\u0107, D.: Creating dispatching rules by simple ensemble combination. J. Heuristics 25(6), 959\u20131013 (2019). https:\/\/doi.org\/10.1007\/s10732-019-09416-x","journal-title":"J. Heuristics"},{"key":"20_CR14","doi-asserted-by":"publisher","first-page":"106637","DOI":"10.1016\/j.asoc.2020.106637","volume":"96","author":"M \u0110urasevi\u0107","year":"2020","unstructured":"\u0110urasevi\u0107, M., Jakobovi\u0107, D.: Comparison of schedule generation schemes for designing dispatching rules with genetic programming in the unrelated machines environment. Appl. Soft Comput. 96, 106637 (2020). https:\/\/doi.org\/10.1016\/j.asoc.2020.106637","journal-title":"Appl. Soft Comput."},{"key":"20_CR15","doi-asserted-by":"publisher","unstructured":"\u0110urasevi\u0107, M., Jakobovi\u0107, D.: Heuristic and metaheuristic methods for the parallel unrelated machines scheduling problem: a survey. Artif. Intell. Rev. (2022). https:\/\/doi.org\/10.1007\/s10462-022-10247-9","DOI":"10.1007\/s10462-022-10247-9"},{"key":"20_CR16","doi-asserted-by":"publisher","first-page":"419","DOI":"10.1016\/j.asoc.2016.07.025","volume":"48","author":"M \u0110urasevi\u0107","year":"2016","unstructured":"\u0110urasevi\u0107, M., Jakobovi\u0107, D., Kne\u017eevi\u0107, K.: Adaptive scheduling on unrelated machines with genetic programming. Appl. Soft Comput. 48, 419\u2013430 (2016). https:\/\/doi.org\/10.1016\/j.asoc.2016.07.025","journal-title":"Appl. Soft Comput."},{"key":"20_CR17","doi-asserted-by":"publisher","first-page":"106030","DOI":"10.1016\/j.cie.2019.106030","volume":"137","author":"I Vla\u0161i\u0107","year":"2019","unstructured":"Vla\u0161i\u0107, I., \u0110urasevi\u0107, M., Jakobovi\u0107, D.: Improving genetic algorithm performance by population initialisation with dispatching rules. Comput. Ind. Eng. 137, 106030 (2019). https:\/\/doi.org\/10.1016\/j.cie.2019.106030","journal-title":"Comput. Ind. Eng."},{"key":"20_CR18","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1016\/j.ijpe.2018.04.013","volume":"201","author":"L Wu","year":"2018","unstructured":"Wu, L., Wang, S.: Exact and heuristic methods to solve the parallel machine scheduling problem with multi-processor tasks. Int. J. Prod. Econ. 201, 26\u201340 (2018). https:\/\/doi.org\/10.1016\/j.ijpe.2018.04.013","journal-title":"Int. J. Prod. Econ."},{"key":"20_CR19","doi-asserted-by":"publisher","unstructured":"Yu, L., Shih, H.M., Pfund, M., Carlyle, W.M., Fowler, J.W.: IIE Trans. 34(11), 921\u2013931 (2002). https:\/\/doi.org\/10.1023\/a:1016185412209","DOI":"10.1023\/a:1016185412209"},{"key":"20_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1007\/978-3-030-44094-7_17","volume-title":"Genetic Programming","author":"F Zhang","year":"2020","unstructured":"Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Guided subtree selection for genetic operators in genetic programming for dynamic flexible job shop scheduling. In: Hu, T., Louren\u00e7o, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol. 12101, pp. 262\u2013278. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-44094-7_17"},{"issue":"3","key":"20_CR21","doi-asserted-by":"publisher","first-page":"552","DOI":"10.1109\/TEVC.2021.3056143","volume":"25","author":"F Zhang","year":"2021","unstructured":"Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Correlation coefficient-based recombinative guidance for genetic programming hyperheuristics in dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 25(3), 552\u2013566 (2021). https:\/\/doi.org\/10.1109\/TEVC.2021.3056143","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"20_CR22","doi-asserted-by":"publisher","first-page":"1797","DOI":"10.1109\/TCYB.2020.3024849","volume":"51","author":"F Zhang","year":"2021","unstructured":"Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans. Cybern. 51(4), 1797\u20131811 (2021). https:\/\/doi.org\/10.1109\/TCYB.2020.3024849","journal-title":"IEEE Trans. Cybern."},{"key":"20_CR23","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"766","DOI":"10.1007\/978-3-030-03991-2_69","volume-title":"AI 2018: Advances in Artificial Intelligence","author":"F Zhang","year":"2018","unstructured":"Zhang, F., Mei, Y., Zhang, M.: Surrogate-assisted genetic programming for dynamic flexible job shop scheduling. In: Mitrovic, T., Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 766\u2013772. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-03991-2_69"}],"container-title":["Lecture Notes in Computer Science","Genetic Programming"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-29573-7_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T19:35:40Z","timestamp":1710358540000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-29573-7_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031295720","9783031295737"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-29573-7_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"29 March 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EuroGP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Genetic Programming (Part of EvoStar)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Brno","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Czech Republic","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 April 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 April 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eurogp2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.evostar.org\/2023\/eurogp\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"14","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"8","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.95","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.9","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}