{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T07:14:18Z","timestamp":1742973258250,"version":"3.40.3"},"publisher-location":"Cham","reference-count":26,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031281235"},{"type":"electronic","value":"9783031281242"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-28124-2_15","type":"book-chapter","created":{"date-parts":[[2023,3,30]],"date-time":"2023-03-30T10:20:17Z","timestamp":1680171617000},"page":"152-164","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["ABODE-Net: An Attention-based Deep Learning Model for\u00a0Non-intrusive Building Occupancy Detection Using Smart Meter Data"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3121-2597","authenticated-orcid":false,"given":"Zhirui","family":"Luo","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9072-9484","authenticated-orcid":false,"given":"Ruobin","family":"Qi","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9006-3552","authenticated-orcid":false,"given":"Qingqing","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6727-5867","authenticated-orcid":false,"given":"Jun","family":"Zheng","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2831-9860","authenticated-orcid":false,"given":"Sihua","family":"Shao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,31]]},"reference":[{"key":"15_CR1","doi-asserted-by":"crossref","unstructured":"Akbar, A., Nati, M., Carrez, F., Moessner, K.: Contextual occupancy detection for smart office by pattern recognition of electricity consumption data. In: 2015 IEEE International Conference on Communications (ICC), pp. 561\u2013566 (2015)","DOI":"10.1109\/ICC.2015.7248381"},{"issue":"4","key":"15_CR2","doi-asserted-by":"publisher","first-page":"4019","DOI":"10.1109\/TPWRS.2013.2266122","volume":"28","author":"A Albert","year":"2013","unstructured":"Albert, A., Rajagopal, R.: Smart meter driven segmentation: what your consumption says about you. IEEE Trans. Power Syst. 28(4), 4019\u20134030 (2013)","journal-title":"IEEE Trans. Power Syst."},{"key":"15_CR3","doi-asserted-by":"crossref","unstructured":"Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The ECO data set and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-efficient Buildings (BuildSys 2014), pp. 80\u201389 (2014)","DOI":"10.1145\/2674061.2674064"},{"key":"15_CR4","doi-asserted-by":"crossref","unstructured":"Chen, D., Barker, S., Subbaswamy, A., Irwin, D., Shenoy, P.: Non-intrusive occupancy monitoring using smart meters. In: Proceedings of the 5th ACM Workshop on Embedded Systems for Energy-Efficient Buildings (BuildSys 2013), pp. 1\u20138 (2013)","DOI":"10.1145\/2528282.2528294"},{"key":"15_CR5","doi-asserted-by":"publisher","first-page":"126","DOI":"10.1016\/j.neunet.2021.01.001","volume":"136","author":"W Chen","year":"2021","unstructured":"Chen, W., Shi, K.: Multi-scale attention convolutional neural network for time series classification. Neural Netw. 136, 126\u2013140 (2021)","journal-title":"Neural Netw."},{"issue":"5","key":"15_CR6","doi-asserted-by":"publisher","first-page":"4490","DOI":"10.1109\/TSG.2020.2982351","volume":"11","author":"C Feng","year":"2020","unstructured":"Feng, C., Mehmani, A., Zhang, J.: Deep learning-based real-time building occupancy detection using AMI data. IEEE Trans. Smart Grid 11(5), 4490\u20134501 (2020)","journal-title":"IEEE Trans. Smart Grid"},{"key":"15_CR7","doi-asserted-by":"crossref","unstructured":"Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3146\u20133154 (2019)","DOI":"10.1109\/CVPR.2019.00326"},{"key":"15_CR8","doi-asserted-by":"publisher","unstructured":"Guo, M.-H., et al.: Attention mechanisms in computer vision: a survey. Comput. Vis. Media 1\u201338 (2022). https:\/\/doi.org\/10.1007\/s41095-022-0271-y","DOI":"10.1007\/s41095-022-0271-y"},{"key":"15_CR9","doi-asserted-by":"crossref","unstructured":"Hao, Y., Cao, H.: A new attention mechanism to classify multivariate time series. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 1999\u20132005 (2020)","DOI":"10.24963\/ijcai.2020\/277"},{"key":"15_CR10","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"issue":"4","key":"15_CR11","doi-asserted-by":"publisher","first-page":"917","DOI":"10.1007\/s10618-019-00619-1","volume":"33","author":"H Ismail Fawaz","year":"2019","unstructured":"Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Discovery 33(4), 917\u2013963 (2019). https:\/\/doi.org\/10.1007\/s10618-019-00619-1","journal-title":"Data Min. Knowl. Discovery"},{"key":"15_CR12","doi-asserted-by":"publisher","first-page":"1662","DOI":"10.1109\/ACCESS.2017.2779939","volume":"6","author":"F Karim","year":"2017","unstructured":"Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time series classification. IEEE Access 6, 1662\u20131669 (2017)","journal-title":"IEEE Access"},{"key":"15_CR13","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1016\/j.neunet.2019.04.014","volume":"116","author":"F Karim","year":"2019","unstructured":"Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for time series classification. Neural Netw. 116, 237\u2013245 (2019)","journal-title":"Neural Netw."},{"key":"15_CR14","doi-asserted-by":"crossref","unstructured":"Kleiminger, W., Beckel, C., Santini, S.: Household occupancy monitoring using electricity meters. In: UbiComp 2015 - Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 975\u2013986, September 2015","DOI":"10.1145\/2750858.2807538"},{"key":"15_CR15","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1016\/j.apenergy.2015.10.140","volume":"163","author":"CD Korkas","year":"2016","unstructured":"Korkas, C.D., Baldi, S., Michailidis, I., Kosmatopoulos, E.B.: Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage. Appl. Energy 163, 93\u2013104 (2016)","journal-title":"Appl. Energy"},{"issue":"17","key":"15_CR16","first-page":"1","volume":"18","author":"G Lema\u00eetre","year":"2017","unstructured":"Lema\u00eetre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1\u20135 (2017)","journal-title":"J. Mach. Learn. Res."},{"key":"15_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TIM.2022.3218574","volume":"71","author":"Q Li","year":"2022","unstructured":"Li, Q., Luo, Z., Zheng, J.: A new deep anomaly detection-based method for user authentication using multichannel surface EMG signals of hand gestures. IEEE Trans. Instrum. Meas. 71, 1\u201311 (2022)","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"15_CR18","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1016\/j.neucom.2019.01.078","volume":"337","author":"G Liu","year":"2019","unstructured":"Liu, G., Guo, J.: Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337, 325\u2013338 (2019)","journal-title":"Neurocomputing"},{"key":"15_CR19","doi-asserted-by":"publisher","first-page":"126065","DOI":"10.1109\/ACCESS.2021.3111790","volume":"9","author":"Z Luo","year":"2021","unstructured":"Luo, Z., Li, Q., Zheng, J.: Deep feature fusion for rumor detection on twitter. IEEE Access 9, 126065\u2013126074 (2021)","journal-title":"IEEE Access"},{"key":"15_CR20","doi-asserted-by":"crossref","unstructured":"Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)","DOI":"10.18653\/v1\/D15-1166"},{"key":"15_CR21","unstructured":"Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)"},{"key":"15_CR22","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1016\/j.enbuild.2018.11.025","volume":"183","author":"R Razavi","year":"2019","unstructured":"Razavi, R., Gharipour, A., Fleury, M., Akpan, I.J.: Occupancy detection of residential buildings using smart meter data: a large-scale study. Energy Buildings 183, 195\u2013208 (2019)","journal-title":"Energy Buildings"},{"key":"15_CR23","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"key":"15_CR24","unstructured":"Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)"},{"key":"15_CR25","doi-asserted-by":"crossref","unstructured":"Tang, Y., Xu, J., Matsumoto, K., Ono, C.: Sequence-to-sequence model with attention for time series classification. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 503\u2013510. IEEE (2016)","DOI":"10.1109\/ICDMW.2016.0078"},{"key":"15_CR26","doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV), pp. 3\u201319 (2018)","DOI":"10.1007\/978-3-030-01234-2_1"}],"container-title":["Lecture Notes in Computer Science","Smart Computing and Communication"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-28124-2_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,30]],"date-time":"2023-03-30T10:39:26Z","timestamp":1680172766000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-28124-2_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031281235","9783031281242"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-28124-2_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"31 March 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SmartCom","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Smart Computing and Communication","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New York, NY","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"smartc2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.cloud-conf.net\/smartcom\/2022\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"312","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"12","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}