{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T21:33:55Z","timestamp":1743024835118,"version":"3.40.3"},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031271984"},{"type":"electronic","value":"9783031271991"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-27199-1_18","type":"book-chapter","created":{"date-parts":[[2023,4,10]],"date-time":"2023-04-10T09:03:19Z","timestamp":1681117399000},"page":"166-176","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Longitudinal Study of\u00a0the\u00a0Emotional Content in\u00a0Indian Political Speeches"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1995-6515","authenticated-orcid":false,"given":"Sandeep Kumar","family":"Pandey","sequence":"first","affiliation":[]},{"given":"Mohit Manohar","family":"Nirgulkar","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5174-8903","authenticated-orcid":false,"given":"Hanumant Singh","family":"Shekhawat","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,4,11]]},"reference":[{"key":"18_CR1","doi-asserted-by":"crossref","unstructured":"Bhaduri, S., Chakraborty, A., Ghosh, D.: Speech emotion quantification with chaos-based modified visibility graph-possible precursor of suicidal tendency. J. Neurol. Neurosci. 7(3) (2016)","DOI":"10.21767\/2171-6625.1000100"},{"key":"18_CR2","doi-asserted-by":"crossref","unstructured":"Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W.F., Weiss, B., et al.: A database of German emotional speech. In: Interspeech, vol. 5, pp. 1517\u20131520 (2005)","DOI":"10.21437\/Interspeech.2005-446"},{"issue":"4","key":"18_CR3","doi-asserted-by":"publisher","first-page":"377","DOI":"10.1109\/TAFFC.2014.2336244","volume":"5","author":"H Cao","year":"2014","unstructured":"Cao, H., Cooper, D.G., Keutmann, M.K., Gur, R.C., Nenkova, A., Verma, R.: Crema-d: crowd-sourced emotional multimodal actors dataset. IEEE Trans. Affect. Comput. 5(4), 377\u2013390 (2014)","journal-title":"IEEE Trans. Affect. Comput."},{"key":"18_CR4","unstructured":"Cislaru, G.: Emotions as a rhetorical tool in political discourse (2012)"},{"issue":"1","key":"18_CR5","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1080\/10584609.2021.1952497","volume":"39","author":"C Cochrane","year":"2022","unstructured":"Cochrane, C., Rheault, L., Godbout, J.F., Whyte, T., Wong, M.W.C., Borwein, S.: The automatic analysis of emotion in political speech based on transcripts. Polit. Commun. 39(1), 98\u2013121 (2022)","journal-title":"Polit. Commun."},{"key":"18_CR6","unstructured":"Dupuis, K., Pichora-Fuller, M.K.: Toronto emotional speech set (tess) (2010)"},{"issue":"643","key":"18_CR7","doi-asserted-by":"publisher","first-page":"1037","DOI":"10.1093\/ej\/ueab104","volume":"132","author":"G Gennaro","year":"2022","unstructured":"Gennaro, G., Ash, E.: Emotion and reason in political language. Econ. J. 132(643), 1037\u20131059 (2022)","journal-title":"Econ. J."},{"key":"18_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1007\/978-3-030-68449-5_18","volume-title":"Intelligent Human Computer Interaction","author":"S Goel","year":"2021","unstructured":"Goel, S., Pandey, S.K., Shekhawat, H.S.: Analysis of emotional content in Indian political speeches. In: Singh, M., Kang, D.-K., Lee, J.-H., Tiwary, U.S., Singh, D., Chung, W.-Y. (eds.) IHCI 2020. LNCS, vol. 12615, pp. 177\u2013185. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-68449-5_18"},{"key":"18_CR9","doi-asserted-by":"crossref","unstructured":"Gong, M., Luo, Q.: Speech emotion recognition in web based education. In: 2007 IEEE International Conference on Grey Systems and Intelligent Services, pp. 1082\u20131086. IEEE (2007)","DOI":"10.1109\/GSIS.2007.4443439"},{"key":"18_CR10","doi-asserted-by":"crossref","unstructured":"Issa, D., Demirci, M.F., Yazici, A.: Speech emotion recognition with deep convolutional neural networks. Biomed. Signal Process. Control 59, 101894 (2020)","DOI":"10.1016\/j.bspc.2020.101894"},{"key":"18_CR11","unstructured":"Jackson, P., Haq, S.: Surrey audio-visual expressed emotion (savee) database. University of Surrey, Guildford, UK (2014)"},{"key":"18_CR12","doi-asserted-by":"crossref","unstructured":"Livingstone, S.R., Russo, F.A.: The Ryerson audio-visual database of emotional speech and song (ravdess): a dynamic, multimodal set of facial and vocal expressions in North American English. PloS one 13(5), e0196391 (2018)","DOI":"10.1371\/journal.pone.0196391"},{"key":"18_CR13","unstructured":"Lutz, C.A., Abu-Lughod, L.E.: Language and the politics of emotion. In: This book grew out of a session at the 1987 annual meeting of the American Anthropological Association called Emotion and Discourse. Editions de la Maison des Sciences de l\u2019Homme (1990)"},{"key":"18_CR14","doi-asserted-by":"publisher","first-page":"125868","DOI":"10.1109\/ACCESS.2019.2938007","volume":"7","author":"H Meng","year":"2019","unstructured":"Meng, H., Yan, T., Yuan, F., Wei, H.: Speech emotion recognition from 3d log-mel spectrograms with deep learning network. IEEE Access 7, 125868\u2013125881 (2019)","journal-title":"IEEE Access"},{"key":"18_CR15","doi-asserted-by":"crossref","unstructured":"Mirsamadi, S., Barsoum, E., Zhang, C.: Automatic speech emotion recognition using recurrent neural networks with local attention. In: 2017 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp. 2227\u20132231. IEEE (2017)","DOI":"10.1109\/ICASSP.2017.7952552"},{"issue":"1","key":"18_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10579-018-9427-x","volume":"53","author":"O Mohamad Nezami","year":"2019","unstructured":"Mohamad Nezami, O., Jamshid Lou, P., Karami, M.: ShEMO: a large-scale validated database for Persian speech emotion detection. Lang. Resour. Eval. 53(1), 1\u201316 (2019)","journal-title":"Lang. Resour. Eval."},{"key":"18_CR17","doi-asserted-by":"crossref","unstructured":"Murray, N., Perronnin, F.: Generalized max pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2473\u20132480 (2014)","DOI":"10.1109\/CVPR.2014.317"},{"key":"18_CR18","unstructured":"Nwankpa, C., Ijomah, W., Gachagan, A., Marshall, S.: Activation functions: comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378 (2018)"},{"key":"18_CR19","doi-asserted-by":"crossref","unstructured":"Pandey, S.K., Shekhawat, H.S., Prasanna, S.M.: Deep learning techniques for speech emotion recognition: a review. In: 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA), pp. 1\u20136. IEEE (2019)","DOI":"10.1109\/RADIOELEK.2019.8733432"},{"key":"18_CR20","doi-asserted-by":"crossref","unstructured":"Pandey, S.K., Shekhawat, H.S., Prasanna, S.: Attention gated tensor neural network architectures for speech emotion recognition. Biomed. Signal Process. Control 71, 103173 (2022)","DOI":"10.1016\/j.bspc.2021.103173"},{"key":"18_CR21","unstructured":"Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall, Inc., Hoboken (1993)"},{"issue":"1","key":"18_CR22","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1016\/j.csl.2012.02.005","volume":"27","author":"B Schuller","year":"2013","unstructured":"Schuller, B., et al.: Paralinguistics in speech and language-state-of-the-art and the challenge. Comput. Speech Lang. 27(1), 4\u201339 (2013)","journal-title":"Comput. Speech Lang."},{"issue":"1","key":"18_CR23","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1037\/1089-2680.9.1.3","volume":"9","author":"SA Shields","year":"2005","unstructured":"Shields, S.A.: The politics of emotion in everyday life: appropriate emotion and claims on identity. Rev. Gen. Psychol. 9(1), 3\u201315 (2005)","journal-title":"Rev. Gen. Psychol."},{"key":"18_CR24","doi-asserted-by":"crossref","unstructured":"Tokuno, S., et al.: Usage of emotion recognition in military health care. In: 2011 Defense Science Research Conference and Expo (DSR), pp. 1\u20135. IEEE (2011)","DOI":"10.1109\/DSR.2011.6026823"},{"issue":"11","key":"18_CR25","doi-asserted-by":"publisher","first-page":"1675","DOI":"10.1109\/TASLP.2019.2925934","volume":"27","author":"Y Xie","year":"2019","unstructured":"Xie, Y., Liang, R., Liang, Z., Huang, C., Zou, C., Schuller, B.: Speech emotion classification using attention-based LSTM. IEEE\/ACM Trans. Audio Speech Lang. Process. 27(11), 1675\u20131685 (2019)","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"18_CR26","doi-asserted-by":"crossref","unstructured":"Yenigalla, P., Kumar, A., Tripathi, S., Singh, C., Kar, S., Vepa, J.: Speech emotion recognition using spectrogram & phoneme embedding. In: Interspeech, vol. 2018, pp. 3688\u20133692 (2018)","DOI":"10.21437\/Interspeech.2018-1811"},{"issue":"7","key":"18_CR27","doi-asserted-by":"publisher","first-page":"1235","DOI":"10.1162\/neco_a_01199","volume":"31","author":"Y Yu","year":"2019","unstructured":"Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235\u20131270 (2019)","journal-title":"Neural Comput."},{"key":"18_CR28","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1016\/j.bspc.2018.08.035","volume":"47","author":"J Zhao","year":"2019","unstructured":"Zhao, J., Mao, X., Chen, L.: Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control 47, 312\u2013323 (2019)","journal-title":"Biomed. Signal Process. Control"}],"container-title":["Lecture Notes in Computer Science","Intelligent Human Computer Interaction"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-27199-1_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,17]],"date-time":"2024-10-17T23:37:25Z","timestamp":1729208245000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-27199-1_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031271984","9783031271991"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-27199-1_18","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"11 April 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IHCI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Human Computer Interaction","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tashkent","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Uzbekistan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ihci2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"148","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"47","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}