{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T01:20:19Z","timestamp":1726190419586},"publisher-location":"Cham","reference-count":35,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031271809"},{"type":"electronic","value":"9783031271816"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-27181-6_23","type":"book-chapter","created":{"date-parts":[[2023,3,9]],"date-time":"2023-03-09T23:34:21Z","timestamp":1678404861000},"page":"327-341","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Why Can Neural Networks Recognize Us by\u00a0Our Finger Movements?"],"prefix":"10.1007","author":[{"given":"Elena Mariolina","family":"Galdi","sequence":"first","affiliation":[]},{"given":"Marco","family":"Alberti","sequence":"additional","affiliation":[]},{"given":"Alessandro","family":"D\u2019Ausilio","sequence":"additional","affiliation":[]},{"given":"Alice","family":"Tomassini","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,11]]},"reference":[{"key":"23_CR1","doi-asserted-by":"publisher","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","volume":"6","author":"A Adadi","year":"2018","unstructured":"Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138\u201352160 (2018). https:\/\/doi.org\/10.1109\/ACCESS.2018.2870052","journal-title":"IEEE Access"},{"key":"23_CR2","doi-asserted-by":"publisher","unstructured":"Ahmad, M.A., Eckert, C., Teredesai, A.: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB 2018, pp. 559\u2013560. Association for Computing Machinery, New York (2018). https:\/\/doi.org\/10.1145\/3233547.3233667","DOI":"10.1145\/3233547.3233667"},{"key":"23_CR3","doi-asserted-by":"publisher","unstructured":"Assaf, R., Schumann, A.: Explainable deep neural networks for multivariate time series predictions. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 6488\u20136490. International Joint Conferences on Artificial Intelligence Organization, Macao (2019). https:\/\/doi.org\/10.24963\/ijcai.2019\/932","DOI":"10.24963\/ijcai.2019\/932"},{"key":"23_CR4","unstructured":"Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K.: How to explain individual classification decisions, p. 29 (2010)"},{"key":"23_CR5","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1613\/jair.1.12228","volume":"70","author":"N Burkart","year":"2021","unstructured":"Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 70, 245\u2013317 (2021). https:\/\/doi.org\/10.1613\/jair.1.12228","journal-title":"J. Artif. Intell. Res."},{"key":"23_CR6","doi-asserted-by":"publisher","unstructured":"Burke, R.E.: Motor units: anatomy, physiology, and functional organization, pp. 345\u2013422. Wiley (2011). https:\/\/doi.org\/10.1002\/cphy.cp010210, https:\/\/onlinelibrary.wiley.com\/doi\/abs\/10.1002\/cphy.cp010210","DOI":"10.1002\/cphy.cp010210"},{"key":"23_CR7","doi-asserted-by":"publisher","unstructured":"Burrell, J.: How the machine \u2018thinks\u2019: understanding opacity in machine learning algorithms. Big Data Soc. 3(1), 205395171562251 (2016). https:\/\/doi.org\/10.1177\/2053951715622512","DOI":"10.1177\/2053951715622512"},{"key":"23_CR8","unstructured":"Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time series classification (2016)"},{"key":"23_CR9","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1007\/978-3-030-32361-5_3","volume-title":"Regulating Artificial Intelligence","author":"C Ernst","year":"2020","unstructured":"Ernst, C.: Artificial intelligence and autonomy: self-determination in the age of automated systems. In: Wischmeyer, T., Rademacher, T. (eds.) Regulating Artificial Intelligence, pp. 53\u201373. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-32361-5_3"},{"issue":"4","key":"23_CR10","doi-asserted-by":"publisher","first-page":"917","DOI":"10.1007\/s10618-019-00619-1","volume":"33","author":"H Ismail Fawaz","year":"2019","unstructured":"Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917\u2013963 (2019). https:\/\/doi.org\/10.1007\/s10618-019-00619-1","journal-title":"Data Min. Knowl. Disc."},{"issue":"1","key":"23_CR11","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1186\/1475-925X-13-94","volume":"13","author":"KR Foster","year":"2014","unstructured":"Foster, K.R., Koprowski, R., Skufca, J.D.: Machine learning, medical diagnosis, and biomedical engineering research - commentary. Biomed. Eng. Online 13(1), 94 (2014). https:\/\/doi.org\/10.1186\/1475-925X-13-94","journal-title":"Biomed. Eng. Online"},{"key":"23_CR12","unstructured":"Gee, A.H., Garcia-Olano, D., Ghosh, J., Paydarfar, D.: Explaining deep classification of time-series data with learned prototypes, p. 8 (2019)"},{"key":"23_CR13","doi-asserted-by":"publisher","unstructured":"Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80\u201389 (2018). https:\/\/doi.org\/10.1109\/DSAA.2018.00018","DOI":"10.1109\/DSAA.2018.00018"},{"issue":"3","key":"23_CR14","doi-asserted-by":"publisher","first-page":"949","DOI":"10.3390\/s20030949","volume":"20","author":"I Gohar","year":"2020","unstructured":"Gohar, I., et al.: Person re-identification using deep modeling of temporally correlated inertial motion patterns. Sensors 20(3), 949 (2020). https:\/\/doi.org\/10.3390\/s20030949","journal-title":"Sensors"},{"key":"23_CR15","unstructured":"Goodfellow, S.D., Goodwin, A., Greer, R., Laussen, P.C., Mazwi, M., Eytan, D.: Towards understanding ECG rhythm classification using convolutional neural networks and attention mappings, p. 18 (2018)"},{"issue":"8","key":"23_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0256500","volume":"16","author":"M Heenaye-Mamode Khan","year":"2021","unstructured":"Heenaye-Mamode Khan, M., et al.: Multi- class classification of breast cancer abnormalities using deep convolutional neural network (CNN). PLOS One 16(8), 1\u201315 (2021). https:\/\/doi.org\/10.1371\/journal.pone.0256500","journal-title":"PLOS One"},{"key":"23_CR17","unstructured":"Hu, Y., Sokolova, M.: Convolutional neural networks in multi-class classification of medical data, p. 13 (2020)"},{"key":"23_CR18","doi-asserted-by":"crossref","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification (2014)","DOI":"10.3115\/v1\/D14-1181"},{"issue":"4","key":"23_CR19","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","volume":"1","author":"Y LeCun","year":"1989","unstructured":"LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541\u2013551 (1989). https:\/\/doi.org\/10.1162\/neco.1989.1.4.541","journal-title":"Neural Comput."},{"key":"23_CR20","unstructured":"Leventi-Peetz, A.M., \u00d6streich, T.: Deep learning reproducibility and explainable AI (XAI) (2022)"},{"issue":"1\u20132","key":"23_CR21","doi-asserted-by":"publisher","first-page":"385","DOI":"10.14778\/1920841.1920893","volume":"3","author":"L Li","year":"2010","unstructured":"Li, L., Prakash, B.A., Faloutsos, C.: Parsimonious linear fingerprinting for time series. Proc. VLDB Endow. 3(1\u20132), 385\u2013396 (2010). https:\/\/doi.org\/10.14778\/1920841.1920893","journal-title":"Proc. VLDB Endow."},{"key":"23_CR22","unstructured":"Little, J.J., Boyd, J.E.: Recognizing people by their gait: the shape of motion, p. 33 (1998)"},{"issue":"1","key":"23_CR23","doi-asserted-by":"publisher","first-page":"15248","DOI":"10.1038\/s41598-021-94815-z","volume":"11","author":"G Park","year":"2021","unstructured":"Park, G., Lee, K.M., Koo, S.: Uniqueness of gait kinematics in a cohort study. Sci. Rep. 11(1), 15248 (2021). https:\/\/doi.org\/10.1038\/s41598-021-94815-z","journal-title":"Sci. Rep."},{"issue":"2","key":"23_CR24","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1002\/isaf.1422","volume":"25","author":"A Preece","year":"2018","unstructured":"Preece, A.: Asking \u2018Why\u2019 in AI: explainability of intelligent systems \u2013 perspectives and challenges. Intell. Syst. Account. Financ. Manage. 25(2), 63\u201372 (2018). https:\/\/doi.org\/10.1002\/isaf.1422","journal-title":"Intell. Syst. Account. Financ. Manage."},{"issue":"3","key":"23_CR25","doi-asserted-by":"publisher","first-page":"403","DOI":"10.3758\/s13423-012-0371-2","volume":"20","author":"BH Repp","year":"2013","unstructured":"Repp, B.H., Su, Y.-H.: Sensorimotor synchronization: a review of recent research (2006\u20132012). Psychon. Bull. Rev. 20(3), 403\u2013452 (2013). https:\/\/doi.org\/10.3758\/s13423-012-0371-2","journal-title":"Psychon. Bull. Rev."},{"key":"23_CR26","doi-asserted-by":"crossref","unstructured":"Ribeiro, M.T., Singh, S., Guestrin, C.: \u201cWhy should i trust you?\u201d: explaining the predictions of any classifier (2016)","DOI":"10.1145\/2939672.2939778"},{"issue":"3","key":"23_CR27","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1109\/JPROC.2021.3060483","volume":"109","author":"W Samek","year":"2021","unstructured":"Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., M\u00fcller, K.R.: Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109(3), 247\u2013278 (2021). https:\/\/doi.org\/10.1109\/JPROC.2021.3060483","journal-title":"Proc. IEEE"},{"issue":"4","key":"23_CR28","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1093\/idpl\/ipx022","volume":"7","author":"AD Selbst","year":"2017","unstructured":"Selbst, A.D., Powles, J.: Meaningful information and the right to explanation. Int. Data Priv. Law 7(4), 233\u2013242 (2017). https:\/\/doi.org\/10.1093\/idpl\/ipx022","journal-title":"Int. Data Priv. Law"},{"key":"23_CR29","unstructured":"\u0160imi\u0107, I., Sabol, V., Veas, E.: XAI methods for neural time series classification: a brief review (2021)"},{"issue":"4","key":"23_CR30","doi-asserted-by":"publisher","first-page":"104096","DOI":"10.1016\/j.isci.2022.104096","volume":"25","author":"A Tomassini","year":"2022","unstructured":"Tomassini, A., et al.: Interpersonal synchronization of movement intermittency. iScience 25(4), 104096 (2022). https:\/\/doi.org\/10.1016\/j.isci.2022.104096","journal-title":"iScience"},{"key":"23_CR31","doi-asserted-by":"publisher","unstructured":"Vale, D., El-Sharif, A., Ali, M.: Explainable artificial intelligence (XAI) post-hoc explainability methods: risks and limitations in non-discrimination law. AI Ethics (2022). https:\/\/doi.org\/10.1007\/s43681-022-00142-y","DOI":"10.1007\/s43681-022-00142-y"},{"key":"23_CR32","doi-asserted-by":"publisher","unstructured":"Woan Ching, S.L., et al.: Multiclass convolution neural network for classification of COVID-19 CT images. Comput. Intell. Neurosci. 2022, 1\u201315 (2022). https:\/\/doi.org\/10.1155\/2022\/9167707","DOI":"10.1155\/2022\/9167707"},{"key":"23_CR33","unstructured":"Yang, J.B., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition, p. 7 (2015)"},{"key":"23_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"298","DOI":"10.1007\/978-3-319-08010-9_33","volume-title":"Web-Age Information Management","author":"Y Zheng","year":"2014","unstructured":"Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298\u2013310. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-08010-9_33"},{"key":"23_CR35","doi-asserted-by":"publisher","unstructured":"Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921\u20132929 (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.319","DOI":"10.1109\/CVPR.2016.319"}],"container-title":["Lecture Notes in Computer Science","AIxIA 2022 \u2013 Advances in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-27181-6_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,9]],"date-time":"2023-03-09T23:37:49Z","timestamp":1678405069000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-27181-6_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031271809","9783031271816"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-27181-6_23","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"11 March 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AIxIA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference of the Italian Association for Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Udine","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 December 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aiia2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/aixia2022.uniud.it\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy Chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"54","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This proceeding includes one invited paper.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}