{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:54:35Z","timestamp":1726188875352},"publisher-location":"Cham","reference-count":52,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031270338"},{"type":"electronic","value":"9783031270345"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-27034-5_7","type":"book-chapter","created":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T09:03:18Z","timestamp":1677315798000},"page":"104-121","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Intrusion Detection by\u00a0XGBoost Model Tuned by\u00a0Improved Social Network Search Algorithm"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2062-924X","authenticated-orcid":false,"given":"Nebojsa","family":"Bacanin","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3324-3909","authenticated-orcid":false,"given":"Aleksandar","family":"Petrovic","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5511-2531","authenticated-orcid":false,"given":"Milos","family":"Antonijevic","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4351-068X","authenticated-orcid":false,"given":"Miodrag","family":"Zivkovic","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8241-2778","authenticated-orcid":false,"given":"Marko","family":"Sarac","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4866-9048","authenticated-orcid":false,"given":"Eva","family":"Tuba","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1154-6696","authenticated-orcid":false,"given":"Ivana","family":"Strumberger","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,2,26]]},"reference":[{"key":"7_CR1","doi-asserted-by":"publisher","first-page":"125306","DOI":"10.1109\/ACCESS.2020.3007928","volume":"8","author":"M Abd Elaziz","year":"2020","unstructured":"Abd Elaziz, M., et al.: An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: real world example of Covid-19 CT image segmentation. IEEE Access 8, 125306\u2013125330 (2020)","journal-title":"IEEE Access"},{"key":"7_CR2","doi-asserted-by":"publisher","first-page":"46","DOI":"10.25007\/ajnu.v6n3a78","volume":"6","author":"SM Abdulrahman","year":"2017","unstructured":"Abdulrahman, S.M.: Using swarm intelligence for solving NP-hard problems. Acad. J. Nawroz Univ. 6, 46\u201350 (2017)","journal-title":"Acad. J. Nawroz Univ."},{"key":"7_CR3","doi-asserted-by":"crossref","unstructured":"Bacanin, N., et al.: Artificial neural networks hidden unit and weight connection optimization by quasi-refection-based learning artificial bee colony algorithm. IEEE (2021)","DOI":"10.1109\/ACCESS.2021.3135201"},{"key":"7_CR4","series-title":"Lecture Notes on Data Engineering and Communications Technologies","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1007\/978-981-16-1866-6_29","volume-title":"Mobile Computing and Sustainable Informatics","author":"N Bacanin","year":"2022","unstructured":"Bacanin, N., Bezdan, T., Zivkovic, M., Chhabra, A.: Weight optimization in artificial neural network training by improved monarch butterfly algorithm. In: Shakya, S., Bestak, R., Palanisamy, R., Kamel, K.A. (eds.) Mobile Computing and Sustainable Informatics. LNDECT, vol. 68, pp. 397\u2013409. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-1866-6_29"},{"key":"7_CR5","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"604","DOI":"10.1007\/978-3-030-81462-5_53","volume-title":"Advances in Computing and Data Sciences","author":"N Bacanin","year":"2021","unstructured":"Bacanin, N., Petrovic, A., Zivkovic, M., Bezdan, T., Antonijevic, M.: Feature selection in machine learning by hybrid sine cosine metaheuristics. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., \u00d6ren, T., Sonawane, V.R. (eds.) ICACDS 2021. CCIS, vol. 1440, pp. 604\u2013616. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-81462-5_53"},{"key":"7_CR6","doi-asserted-by":"publisher","first-page":"4204","DOI":"10.3390\/s22114204","volume":"22","author":"N Bacanin","year":"2022","unstructured":"Bacanin, N., Stoean, C., Zivkovic, M., Jovanovic, D., Antonijevic, M., Mladenovic, D.: Multi-swarm algorithm for extreme learning machine optimization. Sensors 22, 4204 (2022)","journal-title":"Sensors"},{"key":"7_CR7","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"328","DOI":"10.1007\/978-3-030-49336-3_33","volume-title":"Hybrid Intelligent Systems","author":"N Bacanin","year":"2021","unstructured":"Bacanin, N., Tuba, E., Zivkovic, M., Strumberger, I., Tuba, M.: Whale optimization algorithm with exploratory move for wireless sensor networks localization. In: Abraham, A., Shandilya, S.K., Garcia-Hernandez, L., Varela, M.L. (eds.) HIS 2019. AISC, vol. 1179, pp. 328\u2013338. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-49336-3_33"},{"key":"7_CR8","series-title":"Lecture Notes in Networks and Systems","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1007\/978-981-16-5348-3_54","volume-title":"Proceedings of International Conference on Data Science and Applications","author":"N Bacanin","year":"2022","unstructured":"Bacanin, N., Zivkovic, M., Bezdan, T., Cvetnic, D., Gajic, L.: Dimensionality reduction using hybrid brainstorm optimization algorithm. In: Saraswat, M., Roy, S., Chowdhury, C., Gandomi, A.H. (eds.) Proceedings of International Conference on Data Science and Applications. LNNS, vol. 287, pp. 679\u2013692. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-5348-3_54"},{"key":"7_CR9","doi-asserted-by":"publisher","first-page":"9043","DOI":"10.1007\/s00521-022-06925-y","volume":"34","author":"N Bacanin","year":"2022","unstructured":"Bacanin, N., Zivkovic, M., Bezdan, T., Venkatachalam, K., Abouhawwash, M.: Modified firefly algorithm for workflow scheduling in cloud-edge environment. Neural Comput. Appl. 34, 9043\u20139068 (2022)","journal-title":"Neural Comput. Appl."},{"key":"7_CR10","doi-asserted-by":"publisher","first-page":"6654","DOI":"10.3390\/s21196654","volume":"21","author":"J Basha","year":"2021","unstructured":"Basha, J., et al.: Chaotic Harris Hawks optimization with quasi-reflection-based learning: an application to enhance CNN design. Sensors 21, 6654 (2021)","journal-title":"Sensors"},{"key":"7_CR11","series-title":"Encyclopedia of Complexity and Systems Science Series","doi-asserted-by":"publisher","first-page":"791","DOI":"10.1007\/978-1-0716-0368-0_530","volume-title":"Complex Social and Behavioral Systems","author":"G Beni","year":"2020","unstructured":"Beni, G.: Swarm intelligence. In: Sotomayor, M., P\u00e9rez-Castrillo, D., Castiglione, F. (eds.) Complex Social and Behavioral Systems. ECSSS, pp. 791\u2013818. Springer, New York (2020). https:\/\/doi.org\/10.1007\/978-1-0716-0368-0_530"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Bezdan, T., Milosevic, S., Venkatachalam, K., Zivkovic, M., Bacanin, N., Strumberger, I.: Optimizing convolutional neural network by hybridized elephant herding optimization algorithm for magnetic resonance image classification of glioma brain tumor grade. In: 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 171\u2013176 (2021)","DOI":"10.1109\/ZINC52049.2021.9499297"},{"key":"7_CR13","doi-asserted-by":"publisher","first-page":"1929","DOI":"10.3390\/math9161929","volume":"9","author":"T Bezdan","year":"2021","unstructured":"Bezdan, T., et al.: Hybrid fruit-fly optimization algorithm with k-means for text document clustering. Mathematics 9, 1929 (2021)","journal-title":"Mathematics"},{"key":"7_CR14","doi-asserted-by":"crossref","unstructured":"Bezdan, T., Zivkovic, M., Bacanin, N., Chhabra, A., Suresh, M.: Feature selection by hybrid brain storm optimization algorithm for COVID-19 classification. Mary Ann Liebert Inc., publishers 140 Huguenot Street, 3rd Floor New ... (2022)","DOI":"10.1089\/cmb.2021.0256"},{"key":"7_CR15","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"955","DOI":"10.1007\/978-3-030-51156-2_111","volume-title":"Intelligent and Fuzzy Techniques: Smart and Innovative Solutions","author":"T Bezdan","year":"2021","unstructured":"Bezdan, T., Zivkovic, M., Tuba, E., Strumberger, I., Bacanin, N., Tuba, M.: Glioma brain tumor grade classification from MRI using convolutional neural networks designed by modified FA. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 955\u2013963. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-51156-2_111"},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"Bezdan, T., Zivkovic, M., Tuba, E., Strumberger, I., Bacanin, N., Tuba, M.: Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm. In: International Conference on Intelligent and Fuzzy Systems, pp. 718\u2013725 (2020)","DOI":"10.1007\/978-3-030-51156-2_83"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Bukumira, M., Antonijevic, M., Jovanovic, D., Zivkovic, M., Mladenovic, D., Kunjadic, G.: Carrot grading system using computer vision feature parameters and a cascaded graph convolutional neural network, vol. 31, p. 061815. SPIE (2022)","DOI":"10.1117\/1.JEI.31.6.061815"},{"key":"7_CR18","unstructured":"Chen, T., et al.: XGBoost: extreme gradient boosting, vol. 1, pp. 1\u20134 (2015)"},{"key":"7_CR19","doi-asserted-by":"crossref","unstructured":"Cheng, S., Shi, Y.: Diversity control in particle swarm optimization. In: 2011 IEEE Symposium on Swarm Intelligence, pp. 1\u20139 (2011)","DOI":"10.1109\/SIS.2011.5952581"},{"key":"7_CR20","doi-asserted-by":"crossref","unstructured":"Dick, S.: Artificial intelligence. PubPub (2019)","DOI":"10.1162\/99608f92.92fe150c"},{"key":"7_CR21","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-319-18305-3_1","volume-title":"Machine Learning in Radiation Oncology","author":"I El Naqa","year":"2015","unstructured":"El Naqa, I., Murphy, M.J.: What is machine learning? In: El Naqa, I., Li, R., Murphy, M.J. (eds.) Machine Learning in Radiation Oncology, pp. 3\u201311. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-18305-3_1"},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Gumus, M., Kiran, M.S.: Crude oil price forecasting using XGBoost. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 1100\u20131103 (2017)","DOI":"10.1109\/UBMK.2017.8093500"},{"key":"7_CR23","doi-asserted-by":"publisher","first-page":"849","DOI":"10.1016\/j.future.2019.02.028","volume":"97","author":"AA Heidari","year":"2019","unstructured":"Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849\u2013872 (2019)","journal-title":"Future Gener. Comput. Syst."},{"key":"7_CR24","doi-asserted-by":"publisher","first-page":"2272","DOI":"10.3390\/math10132272","volume":"10","author":"D Jovanovic","year":"2022","unstructured":"Jovanovic, D., Antonijevic, M., Stankovic, M., Zivkovic, M., Tanaskovic, M., Bacanin, N.: Tuning machine learning models using a group search firefly algorithm for credit card fraud detection. Mathematics 10, 2272 (2022)","journal-title":"Mathematics"},{"key":"7_CR25","doi-asserted-by":"crossref","unstructured":"Jovanovic, L., Zivkovic, M., Antonijevic, M., Jovanovic, D., Ivanovic, M., Jassim, H.S.: An emperor penguin optimizer application for medical diagnostics. In: 2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 191\u2013196 (2022)","DOI":"10.1109\/ZINC55034.2022.9840612"},{"key":"7_CR26","doi-asserted-by":"publisher","first-page":"6915","DOI":"10.4249\/scholarpedia.6915","volume":"5","author":"D Karaboga","year":"2010","unstructured":"Karaboga, D.: Artificial bee colony algorithm. Scholarpedia 5, 6915 (2010)","journal-title":"Scholarpedia"},{"key":"7_CR27","doi-asserted-by":"crossref","unstructured":"Kiangala, S.K., Wang, Z.: An effective adaptive customization framework for small manufacturing plants using extreme gradient boosting-XGBoost and random forest ensemble learning algorithms in an industry 4.0 environment, vol. 4, p. 100024. Elsevier (2021)","DOI":"10.1016\/j.mlwa.2021.100024"},{"key":"7_CR28","doi-asserted-by":"publisher","unstructured":"Latha, R.S., Saravana Balaji, B., Bacanin, N., Strumberger, I., Zivkovic, M., Kabiljo, M.: Feature selection using grey wolf optimization with random differential grouping. Comput. Syst. Sci. Eng. 43, pp. 317\u2013332 (2022). https:\/\/doi.org\/10.32604\/csse.2022.020487, http:\/\/www.techscience.com\/csse\/v43n1\/47062","DOI":"10.32604\/csse.2022.020487"},{"key":"7_CR29","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1016\/j.advengsoft.2017.07.002","volume":"114","author":"S Mirjalili","year":"2017","unstructured":"Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163\u2013191 (2017)","journal-title":"Adv. Eng. Softw."},{"key":"7_CR30","doi-asserted-by":"publisher","first-page":"805","DOI":"10.1007\/s10489-017-1019-8","volume":"48","author":"SZ Mirjalili","year":"2018","unstructured":"Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48, 805\u2013820 (2018)","journal-title":"Appl. Intell."},{"key":"7_CR31","first-page":"63","volume":"13","author":"S Mohammed","year":"2020","unstructured":"Mohammed, S., Alkinani, F., Hassan, Y.: Automatic computer aided diagnostic for COVID-19 based on chest X-ray image and particle swarm intelligence. Int. J. Intell. Eng. Syst. 13, 63\u201373 (2020)","journal-title":"Int. J. Intell. Eng. Syst."},{"key":"7_CR32","doi-asserted-by":"crossref","unstructured":"Muslim, M.A., Dasril, Y.: Company bankruptcy prediction framework based on the most influential features using XGBoost and stacking ensemble learning, vol. 11 (2021)","DOI":"10.11591\/ijece.v11i6.pp5549-5557"},{"key":"7_CR33","doi-asserted-by":"publisher","first-page":"4285","DOI":"10.1109\/TVT.2020.2973294","volume":"69","author":"QV Pham","year":"2020","unstructured":"Pham, Q.V., Mirjalili, S., Kumar, N., Alazab, M., Hwang, W.J.: Whale optimization algorithm with applications to resource allocation in wireless networks. IEEE Trans. Veh. Technol. 69, 4285\u20134297 (2020)","journal-title":"IEEE Trans. Veh. Technol."},{"key":"7_CR34","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1007\/s11721-007-0002-0","volume":"1","author":"R Poli","year":"2007","unstructured":"Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1, 33\u201357 (2007)","journal-title":"Swarm Intell."},{"key":"7_CR35","doi-asserted-by":"publisher","unstructured":"Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-oppositional differential evolution. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2229\u20132236 (2007). https:\/\/doi.org\/10.1109\/CEC.2007.4424748","DOI":"10.1109\/CEC.2007.4424748"},{"key":"7_CR36","series-title":"Algorithms for Intelligent Systems","doi-asserted-by":"publisher","first-page":"527","DOI":"10.1007\/978-981-16-8225-4_40","volume-title":"Computer Vision and Robotics","author":"M Salb","year":"2022","unstructured":"Salb, M., Zivkovic, M., Bacanin, N., Chhabra, A., Suresh, M.: Support vector machine performance improvements for cryptocurrency value forecasting by enhanced sine cosine algorithm. In: Bansal, J.C., Engelbrecht, A., Shukla, P.K. (eds.) Computer Vision and Robotics. Algorithms for Intelligent Systems, pp. 527\u2013536. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-8225-4_40"},{"key":"7_CR37","doi-asserted-by":"crossref","unstructured":"Stone-Gross, B., et al.: Your botnet is my botnet: analysis of a botnet takeover. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 635\u2013647 (2009)","DOI":"10.1145\/1653662.1653738"},{"key":"7_CR38","doi-asserted-by":"publisher","unstructured":"Tair, M., Bacanin, N., Zivkovic, M., Venkatachalam, K.: A chaotic oppositional whale optimisation algorithm with firefly search for medical diagnostics. Comput. Mater. Contin. 72, pp. 959\u2013982 (2022). https:\/\/doi.org\/10.32604\/cmc.2022.024989, http:\/\/www.techscience.com\/cmc\/v72n1\/46919","DOI":"10.32604\/cmc.2022.024989"},{"key":"7_CR39","doi-asserted-by":"publisher","unstructured":"Talatahari, S., Bayzidi, H., Saraee, M.: Social network search for global optimization (2021). https:\/\/doi.org\/10.1109\/ACCESS.2021.3091495","DOI":"10.1109\/ACCESS.2021.3091495"},{"key":"7_CR40","doi-asserted-by":"publisher","first-page":"92815","DOI":"10.1109\/ACCESS.2021.3091495","volume":"9","author":"S Talatahari","year":"2021","unstructured":"Talatahari, S., Bayzidi, H., Saraee, M.: Social network search for global optimization. IEEE Access 9, 92815\u201392863 (2021). https:\/\/doi.org\/10.1109\/ACCESS.2021.3091495","journal-title":"IEEE Access"},{"key":"7_CR41","doi-asserted-by":"crossref","unstructured":"Wang, G.G., Deb, S., Coelho, L.D.S.: Elephant herding optimization. In: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), pp. 1\u20135 (2015)","DOI":"10.1109\/ISCBI.2015.8"},{"key":"7_CR42","doi-asserted-by":"publisher","first-page":"1995","DOI":"10.1007\/s00521-015-1923-y","volume":"31","author":"GG Wang","year":"2019","unstructured":"Wang, G.G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31, 1995\u20132014 (2019)","journal-title":"Neural Comput. Appl."},{"key":"7_CR43","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1109\/4235.585893","volume":"1","author":"DH Wolpert","year":"1997","unstructured":"Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67\u201382 (1997)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"7_CR44","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1007\/978-3-642-04944-6_14","volume-title":"Stochastic Algorithms: Foundations and Applications","author":"X-S Yang","year":"2009","unstructured":"Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169\u2013178. Springer, Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-642-04944-6_14"},{"key":"7_CR45","doi-asserted-by":"crossref","unstructured":"Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation (2010)","DOI":"10.1504\/IJBIC.2010.032124"},{"key":"7_CR46","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1504\/IJBIC.2011.042259","volume":"3","author":"XS Yang","year":"2011","unstructured":"Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspir. Comput. 3, 267\u2013274 (2011)","journal-title":"Int. J. Bio-Inspir. Comput."},{"key":"7_CR47","doi-asserted-by":"crossref","unstructured":"Yang, X.S.: Bat algorithm: literature review and applications (2013)","DOI":"10.1504\/IJBIC.2013.055093"},{"key":"7_CR48","series-title":"Lecture Notes in Networks and Systems","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1007\/978-981-33-4355-9_14","volume-title":"Proceedings of International Conference on Sustainable Expert Systems","author":"M Zivkovic","year":"2021","unstructured":"Zivkovic, M., et al.: Hybrid genetic algorithm and machine learning method for COVID-19 cases prediction. In: Shakya, S., Balas, V.E., Haoxiang, W., Baig, Z. (eds.) Proceedings of International Conference on Sustainable Expert Systems. LNNS, vol. 176, pp. 169\u2013184. Springer, Singapore (2021). https:\/\/doi.org\/10.1007\/978-981-33-4355-9_14"},{"key":"7_CR49","doi-asserted-by":"crossref","unstructured":"Zivkovic, M., Bacanin, N., Tuba, E., Strumberger, I., Bezdan, T., Tuba, M.: Wireless sensor networks life time optimization based on the improved firefly algorithm. In: 2020 International Wireless Communications and Mobile Computing (IWCMC), pp. 1176\u20131181 (2020)","DOI":"10.1109\/IWCMC48107.2020.9148087"},{"key":"7_CR50","doi-asserted-by":"publisher","first-page":"102669","DOI":"10.1016\/j.scs.2020.102669","volume":"66","author":"M Zivkovic","year":"2021","unstructured":"Zivkovic, M., et al.: COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 66, 102669 (2021)","journal-title":"Sustain. Cities Soc."},{"key":"7_CR51","series-title":"Lecture Notes on Data Engineering and Communications Technologies","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1007\/978-981-16-9605-3_2","volume-title":"Evolutionary Computing and Mobile Sustainable Networks","author":"M Zivkovic","year":"2022","unstructured":"Zivkovic, M., Jovanovic, L., Ivanovic, M., Krdzic, A., Bacanin, N., Strumberger, I.: Feature selection using modified sine cosine algorithm with COVID-19 dataset. In: Suma, V., Fernando, X., Du, K.-L., Wang, H. (eds.) Evolutionary Computing and Mobile Sustainable Networks. LNDECT, vol. 116, pp. 15\u201331. Springer, Singapore (2022). https:\/\/doi.org\/10.1007\/978-981-16-9605-3_2"},{"key":"7_CR52","doi-asserted-by":"publisher","first-page":"1711","DOI":"10.3390\/s22051711","volume":"22","author":"M Zivkovic","year":"2022","unstructured":"Zivkovic, M., Stoean, C., Chhabra, A., Budimirovic, N., Petrovic, A., Bacanin, N.: Novel improved salp swarm algorithm: an application for feature selection. Sensors 22, 1711 (2022)","journal-title":"Sensors"}],"container-title":["Communications in Computer and Information Science","Modelling and Development of Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-27034-5_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,25]],"date-time":"2023-02-25T09:23:36Z","timestamp":1677317016000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-27034-5_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031270338","9783031270345"],"references-count":52,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-27034-5_7","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"26 February 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MDIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Modelling and Development of Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sibiu","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Romania","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mdis2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.ulbsibiu.ro\/mdis\/2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"OpenConf","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"21","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"44% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}