{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T10:21:35Z","timestamp":1743070895692,"version":"3.40.3"},"publisher-location":"Cham","reference-count":38,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031264085"},{"type":"electronic","value":"9783031264092"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-26409-2_26","type":"book-chapter","created":{"date-parts":[[2023,3,16]],"date-time":"2023-03-16T09:04:46Z","timestamp":1678957486000},"page":"427-442","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Rethinking the\u00a0Misalignment Problem in\u00a0Dense Object Detection"],"prefix":"10.1007","author":[{"given":"Yang","family":"Yang","sequence":"first","affiliation":[]},{"given":"Min","family":"Li","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Meng","sequence":"additional","affiliation":[]},{"given":"Zihao","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Junxing","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Degang","family":"Sun","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,17]]},"reference":[{"key":"26_CR1","unstructured":"Chen, K., et al.: Mmdetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)"},{"key":"26_CR2","unstructured":"Chen, Y., Zhang, Z., Cao, Y., Wang, L., Lin, S., Hu, H.: Reppoints v2: verification meets regression for object detection. In: 33rd Proceedings of Conference on Advances in Neural Information Processing Systems(2020)"},{"key":"26_CR3","doi-asserted-by":"crossref","unstructured":"Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Selective refinement network for high performance face detection. In: AAAI, vol. 33, pp. 8231\u20138238 (2019)","DOI":"10.1609\/aaai.v33i01.33018231"},{"key":"26_CR4","doi-asserted-by":"crossref","unstructured":"Dai, J., et al.: Deformable convolutional networks. In: ICCV, pp. 764\u2013773 (2017)","DOI":"10.1109\/ICCV.2017.89"},{"key":"26_CR5","unstructured":"Duan, K., Xie, L., Qi, H., Bai, S., Huang, Q., Tian, Q.: Location-sensitive visual recognition with cross-iou loss. arXiv preprint arXiv:2104.04899 (2021)"},{"key":"26_CR6","doi-asserted-by":"crossref","unstructured":"Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: TOOD: task-aligned one-stage object detection. In: ICCV., pp. 3490\u20133499. IEEE Computer Society (2021)","DOI":"10.1109\/ICCV48922.2021.00349"},{"key":"26_CR7","unstructured":"Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)"},{"key":"26_CR8","doi-asserted-by":"crossref","unstructured":"Ji, M., Shin, S., Hwang, S., Park, G., Moon, I.C.: Refine myself by teaching myself: Feature refinement via self-knowledge distillation. In: CVPR, pp. 10664\u201310673 (2021)","DOI":"10.1109\/CVPR46437.2021.01052"},{"key":"26_CR9","unstructured":"Kang, Z., Zhang, P., Zhang, X., Sun, J., Zheng, N.: Instance-conditional knowledge distillation for object detection. In: NeurIPS (2021)"},{"key":"26_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1007\/978-3-030-58595-2_22","volume-title":"Computer Vision \u2013 ECCV 2020","author":"K Kim","year":"2020","unstructured":"Kim, K., Lee, H.S.: Probabilistic anchor assignment with IoU prediction for object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 355\u2013371. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58595-2_22"},{"key":"26_CR11","doi-asserted-by":"crossref","unstructured":"Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: ECCV, pp. 734\u2013750 (2018)","DOI":"10.1007\/978-3-030-01264-9_45"},{"key":"26_CR12","doi-asserted-by":"crossref","unstructured":"Li, X., Wang, W., Hu, X., Li, J., Tang, J., Yang, J.: Generalized focal loss v2: learning reliable localization quality estimation for dense object detection. In: CVPR, pp. 11632\u201311641 (2021)","DOI":"10.1109\/CVPR46437.2021.01146"},{"key":"26_CR13","doi-asserted-by":"crossref","unstructured":"Li, X., et al.: Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. In: NeurIPS (2020)","DOI":"10.1109\/CVPR46437.2021.01146"},{"key":"26_CR14","unstructured":"Li, Z., Li, X., Yang, L., Yang, J., Pan, Z.: Student helping teacher: teacher evolution via self-knowledge distillation. arXiv preprint arXiv:2110.00329 (2021)"},{"key":"26_CR15","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117\u20132125 (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"26_CR16","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: ICCV, pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"26_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T Lin","year":"2014","unstructured":"Lin, T., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"26_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1007\/978-3-030-58452-8_32","volume-title":"Computer Vision \u2013 ECCV 2020","author":"H Qiu","year":"2020","unstructured":"Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J.: BorderDet: border feature for dense object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 549\u2013564. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_32"},{"key":"26_CR19","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR, pp. 779\u2013788 (2016)","DOI":"10.1109\/CVPR.2016.91"},{"key":"26_CR20","unstructured":"Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)"},{"key":"26_CR21","doi-asserted-by":"crossref","unstructured":"Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR, pp. 658\u2013666 (2019)","DOI":"10.1109\/CVPR.2019.00075"},{"key":"26_CR22","doi-asserted-by":"crossref","unstructured":"Song, G., Liu, Y., Wang, X.: Revisiting the sibling head in object detector. In: CVPR, pp. 11563\u201311572 (2020)","DOI":"10.1109\/CVPR42600.2020.01158"},{"key":"26_CR23","doi-asserted-by":"crossref","unstructured":"Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV, pp. 9627\u20139636 (2019)","DOI":"10.1109\/ICCV.2019.00972"},{"key":"26_CR24","doi-asserted-by":"crossref","unstructured":"Tian, Z., Shen, C., Chen, H., He, T.: FCOS: a simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. (2020)","DOI":"10.1109\/TPAMI.2020.3032166"},{"key":"26_CR25","doi-asserted-by":"crossref","unstructured":"Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided anchoring. In: CVPR, pp. 2965\u20132974 (2019)","DOI":"10.1109\/CVPR.2019.00308"},{"key":"26_CR26","doi-asserted-by":"crossref","unstructured":"Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: CVPR, pp. 4933\u20134942 (2019)","DOI":"10.1109\/CVPR.2019.00507"},{"key":"26_CR27","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2020.103911","volume":"97","author":"S Wu","year":"2020","unstructured":"Wu, S., Li, X., Wang, X.: IOU-aware single-stage object detector for accurate localization. Image Vis. Comput. 97, 103911 (2020)","journal-title":"Image Vis. Comput."},{"key":"26_CR28","doi-asserted-by":"crossref","unstructured":"Wu, Y., Chen, Y., Yuan, L., Liu, Z., Wang, L., Li, H., Fu, Y.: Rethinking classification and localization for object detection. In: CVPR, pp. 10186\u201310195 (2020)","DOI":"10.1109\/CVPR42600.2020.01020"},{"key":"26_CR29","doi-asserted-by":"crossref","unstructured":"Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: point set representation for object detection. In: ICCV, pp. 9657\u20139666 (2019)","DOI":"10.1109\/ICCV.2019.00975"},{"key":"26_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"294","DOI":"10.1007\/978-3-030-58555-6_18","volume-title":"Computer Vision \u2013 ECCV 2020","author":"A Yao","year":"2020","unstructured":"Yao, A., Sun, D.: Knowledge transfer via dense cross-layer mutual-distillation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 294\u2013311. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58555-6_18"},{"key":"26_CR31","doi-asserted-by":"crossref","unstructured":"Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: Varifocalnet: An iou-aware dense object detector. In: CVPR. pp. 8514\u20138523 (2021)","DOI":"10.1109\/CVPR46437.2021.00841"},{"key":"26_CR32","doi-asserted-by":"crossref","unstructured":"Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher: Improve the performance of convolutional neural networks via self distillation. In: ICCV, pp. 3713\u20133722 (2019)","DOI":"10.1109\/ICCV.2019.00381"},{"key":"26_CR33","doi-asserted-by":"crossref","unstructured":"Zhang, P., Kang, Z., Yang, T., Zhang, X., Zheng, N., Sun, J.: Lgd: label-guided self-distillation for object detection. arXiv preprint arXiv:2109.11496 (2021)","DOI":"10.1609\/aaai.v36i3.20240"},{"key":"26_CR34","doi-asserted-by":"crossref","unstructured":"Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: CVPR, pp. 9759\u20139768 (2020)","DOI":"10.1109\/CVPR42600.2020.00978"},{"key":"26_CR35","doi-asserted-by":"crossref","unstructured":"Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: CVPR, pp. 4203\u20134212 (2018)","DOI":"10.1109\/CVPR.2018.00442"},{"key":"26_CR36","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR, pp. 4320\u20134328 (2018)","DOI":"10.1109\/CVPR.2018.00454"},{"key":"26_CR37","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1007\/978-3-030-58545-7_6","volume-title":"Computer Vision \u2013 ECCV 2020","author":"C Zhu","year":"2020","unstructured":"Zhu, C., Chen, F., Shen, Z., Savvides, M.: Soft anchor-point object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 91\u2013107. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58545-7_6"},{"key":"26_CR38","doi-asserted-by":"crossref","unstructured":"Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better results. In: CVPR. pp. 9308\u20139316 (2019)","DOI":"10.1109\/CVPR.2019.00953"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-26409-2_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,16]],"date-time":"2023-03-16T09:27:23Z","timestamp":1678958843000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-26409-2_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031264085","9783031264092"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-26409-2_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"17 March 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECML PKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Grenoble","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecml2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2022.ecmlpkdd.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1060","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"236","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"17 demo track papers have been accepted from 28 submissions","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}