{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T01:39:02Z","timestamp":1726191542694},"publisher-location":"Cham","reference-count":34,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031263897"},{"type":"electronic","value":"9783031263903"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-26390-3_32","type":"book-chapter","created":{"date-parts":[[2023,3,16]],"date-time":"2023-03-16T09:04:46Z","timestamp":1678957486000},"page":"553-570","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An Ion Exchange Mechanism Inspired Story Ending Generator for\u00a0Different Characters"],"prefix":"10.1007","author":[{"given":"Xinyu","family":"Jiang","sequence":"first","affiliation":[]},{"given":"Qi","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Chongyang","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Kaiying","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Shoujin","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,17]]},"reference":[{"key":"32_CR1","doi-asserted-by":"crossref","unstructured":"Chen, J., Chen, J., Yu, Z.: Incorporating structured commonsense knowledge in story completion. In: AAAI, pp. 6244\u20136251. AAAI Press (2019)","DOI":"10.1609\/aaai.v33i01.33016244"},{"volume-title":"Ion Exchange","year":"2012","author":"JC Crittenden","key":"32_CR2","unstructured":"Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G.: Ion Exchange. John Wiley, New York (2012)"},{"key":"32_CR3","unstructured":"Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1), pp. 4171\u20134186 (2019)"},{"key":"32_CR4","doi-asserted-by":"crossref","unstructured":"Fan, A., Lewis, M., Dauphin, Y.N.: Hierarchical neural story generation. In: ACL, pp. 889\u2013898 (2018)","DOI":"10.18653\/v1\/P18-1082"},{"key":"32_CR5","doi-asserted-by":"crossref","unstructured":"Fan, A., Lewis, M., Dauphin, Y.N.: Strategies for structuring story generation. In: ACL, pp. 2650\u20132660 (2019)","DOI":"10.18653\/v1\/P19-1254"},{"key":"32_CR6","unstructured":"Fedus, W., Goodfellow, I.J., Dai, A.M.: Maskgan: Better text generation via filling in the _______. In: ICLR (2018)"},{"key":"32_CR7","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.107380","volume":"230","author":"C Feng","year":"2021","unstructured":"Feng, C., Shi, C., Hao, S., Zhang, Q., Jiang, X., Yu, D.: Hierarchical social similarity-guided model with dual-mode attention for session-based recommendation. Knowl. Based Syst. 230, 107380 (2021)","journal-title":"Knowl. Based Syst."},{"key":"32_CR8","doi-asserted-by":"crossref","unstructured":"Gao, J., Bi, W., Liu, X., Li, J., Shi, S.: Generating multiple diverse responses for short-text conversation. In: AAAI, pp. 6383\u20136390 (2019)","DOI":"10.1609\/aaai.v33i01.33016383"},{"key":"32_CR9","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1162\/tacl_a_00302","volume":"8","author":"J Guan","year":"2020","unstructured":"Guan, J., Huang, F., Huang, M., Zhao, Z., Zhu, X.: A knowledge-enhanced pretraining model for commonsense story generation. Trans. Assoc. Comput. Linguistics 8, 93\u2013108 (2020)","journal-title":"Trans. Assoc. Comput. Linguistics"},{"key":"32_CR10","doi-asserted-by":"crossref","unstructured":"Guan, J., Wang, Y., Huang, M.: Story ending generation with incremental encoding and commonsense knowledge. In: AAAI, pp. 6473\u20136480 (2019)","DOI":"10.1609\/aaai.v33i01.33016473"},{"key":"32_CR11","doi-asserted-by":"crossref","unstructured":"Huang, Q., et al.: Story ending generation with multi-level graph convolutional networks over dependency trees. In: AAAI, pp. 13073\u201313081 (2021)","DOI":"10.1609\/aaai.v35i14.17545"},{"key":"32_CR12","unstructured":"Kennedy, R.H.: Elution of uranium values from ion exchange resins (1959)"},{"issue":"8","key":"32_CR13","doi-asserted-by":"publisher","first-page":"2053","DOI":"10.1016\/j.watres.2004.01.012","volume":"38","author":"J Kim","year":"2004","unstructured":"Kim, J., Benjamin, M.M.: Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res. 38(8), 2053\u20132062 (2004)","journal-title":"Water Res."},{"key":"32_CR14","doi-asserted-by":"crossref","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP, pp. 1746\u20131751 (2014)","DOI":"10.3115\/v1\/D14-1181"},{"key":"32_CR15","doi-asserted-by":"crossref","unstructured":"Liu, D., et al.: A character-centric neural model for automated story generation. In: AAAI, pp. 1725\u20131732 (2020)","DOI":"10.1609\/aaai.v34i02.5536"},{"key":"32_CR16","doi-asserted-by":"crossref","unstructured":"Luo, F., et al.: Learning to control the fine-grained sentiment for story ending generation. In: ACL, pp. 6020\u20136026 (2019)","DOI":"10.18653\/v1\/P19-1603"},{"key":"32_CR17","doi-asserted-by":"crossref","unstructured":"Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: EMNLP, pp. 1412\u20131421 (2015)","DOI":"10.18653\/v1\/D15-1166"},{"key":"32_CR18","doi-asserted-by":"crossref","unstructured":"Mao, H.H., Majumder, B.P., McAuley, J.J., Cottrell, G.W.: Improving neural story generation by targeted common sense grounding. In: EMNLP, pp. 5987\u20135992 (2019)","DOI":"10.18653\/v1\/D19-1615"},{"key":"32_CR19","doi-asserted-by":"crossref","unstructured":"Martin, L.J., et al.: Event representations for automated story generation with deep neural nets. In: AAAI, pp. 868\u2013875 (2018)","DOI":"10.1609\/aaai.v32i1.11430"},{"key":"32_CR20","doi-asserted-by":"publisher","first-page":"453","DOI":"10.1016\/j.neucom.2021.01.040","volume":"453","author":"L Mo","year":"2021","unstructured":"Mo, L.: Incorporating sentimental trend into gated mechanism based transformer network for story ending generation. Neurocomputing 453, 453\u2013464 (2021)","journal-title":"Neurocomputing"},{"key":"32_CR21","doi-asserted-by":"crossref","unstructured":"Mostafazadeh, N., Vanderwende, L., Yih, W., Kohli, P., Allen, J.F.: Story cloze evaluator: Vector space representation evaluation by predicting what happens next. In: Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for NLP, pp. 24\u201329 (2016)","DOI":"10.18653\/v1\/W16-2505"},{"key":"32_CR22","unstructured":"Mou, L., Song, Y., Yan, R., Li, G., Zhang, L., Jin, Z.: Sequence to backward and forward sequences: a content-introducing approach to generative short-text conversation. In: COLING, pp. 3349\u20133358 (2016)"},{"key":"32_CR23","doi-asserted-by":"crossref","unstructured":"Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic evaluation of machine translation. In: ACL, pp. 311\u2013318 (2002)","DOI":"10.3115\/1073083.1073135"},{"key":"32_CR24","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532\u20131543 (2014)","DOI":"10.3115\/v1\/D14-1162"},{"key":"32_CR25","doi-asserted-by":"crossref","unstructured":"Sch\u00fctt, K.T., Gastegger, M., Tkatchenko, A., M\u00fcller, K.R., Maurer, R.J.: Unifying machine learning and quantum chemistry - a deep neural network for molecular wavefunctions. Nat. Commun. (2019)","DOI":"10.1038\/s41467-019-12875-2"},{"issue":"7698","key":"32_CR26","doi-asserted-by":"publisher","first-page":"604","DOI":"10.1038\/nature25978","volume":"555","author":"MHS Segler","year":"2018","unstructured":"Segler, M.H.S., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698), 604 (2018)","journal-title":"Nature"},{"key":"32_CR27","doi-asserted-by":"crossref","unstructured":"Tu, L., Ding, X., Yu, D., Gimpel, K.: Generating diverse story continuations with controllable semantics. In: NGT@EMNLP-IJCNLP, pp. 44\u201358 (2019)","DOI":"10.18653\/v1\/D19-5605"},{"key":"32_CR28","unstructured":"Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998\u20136008 (2017)"},{"key":"32_CR29","doi-asserted-by":"crossref","unstructured":"Wang, T., Wan, X.: T-CVAE: transformer-based conditioned variational autoencoder for story completion. In: IJCAI, pp. 5233\u20135239 (2019)","DOI":"10.24963\/ijcai.2019\/727"},{"key":"32_CR30","unstructured":"Welleck, S., Brantley, K., III, H.D., Cho, K.: Non-monotonic sequential text generation. In: ICML Proceedings of Machine Learning Research, vol. 97, pp. 6716\u20136726 (2019)"},{"key":"32_CR31","doi-asserted-by":"crossref","unstructured":"Xu, J., Ren, X., Zhang, Y., Zeng, Q., Cai, X., Sun, X.: A skeleton-based model for promoting coherence among sentences in narrative story generation. In: EMNLP, pp. 4306\u20134315 (2018)","DOI":"10.18653\/v1\/D18-1462"},{"key":"32_CR32","doi-asserted-by":"crossref","unstructured":"Xu, P., et al.: MEGATRON-CNTRL: controllable story generation with external knowledge using large-scale language models. In: EMNLP (1), pp. 2831\u20132845 (2020)","DOI":"10.18653\/v1\/2020.emnlp-main.226"},{"key":"32_CR33","doi-asserted-by":"crossref","unstructured":"Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical attention networks for document classification. In: NAACL, pp. 1480\u20131489 (2016)","DOI":"10.18653\/v1\/N16-1174"},{"key":"32_CR34","unstructured":"Zhang, Q., Cao, L., Shi, C., Niu, Z.: Neural time-aware sequential recommendation by jointly modeling preference dynamics and explicit feature couplings. IEEE Trans. Neural Netw. Learn. Syst. 1\u201313 (2021)"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-26390-3_32","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,13]],"date-time":"2023-10-13T07:08:50Z","timestamp":1697180930000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-26390-3_32"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031263897","9783031263903"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-26390-3_32","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"17 March 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECML PKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Grenoble","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecml2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2022.ecmlpkdd.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1060","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"236","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"17 demo track papers have been accepted from 28 submissions","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}