{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T11:08:10Z","timestamp":1742987290892,"version":"3.40.3"},"publisher-location":"Cham","reference-count":20,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031258909"},{"type":"electronic","value":"9783031258916"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-25891-6_9","type":"book-chapter","created":{"date-parts":[[2023,3,9]],"date-time":"2023-03-09T14:03:34Z","timestamp":1678370614000},"page":"108-122","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Strategic Workforce Planning with\u00a0Deep Reinforcement Learning"],"prefix":"10.1007","author":[{"given":"Yannick","family":"Smit","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2092-9904","authenticated-orcid":false,"given":"Floris","family":"den Hengst","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1124-8821","authenticated-orcid":false,"given":"Sandjai","family":"Bhulai","sequence":"additional","affiliation":[]},{"given":"Ehsan","family":"Mehdad","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,10]]},"reference":[{"key":"9_CR1","unstructured":"April, J., Better, M., Glover, F.W., Kelly, J.P., Kochenberger, G.A.: Ensuring workforce readiness with optforce (2013). Unpublished manuscript retrieved from opttek.com"},{"issue":"10","key":"9_CR2","doi-asserted-by":"publisher","first-page":"3692","DOI":"10.3390\/su10103692","volume":"10","author":"T Banyai","year":"2018","unstructured":"Banyai, T., Landschutzer, C., Banyai, A.: Markov-chain simulation-based analysis of human resource structure: how staff deployment and staffing affect sustainable human resource strategy. Sustainability 10(10), 3692 (2018)","journal-title":"Sustainability"},{"issue":"3","key":"9_CR3","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1287\/msom.1070.0172","volume":"10","author":"S Bhulai","year":"2008","unstructured":"Bhulai, S., Koole, G., Pot, A.: Simple methods for shift scheduling in multiskill call centers. Manuf. Serv. Oper. Manage. 10(3), 411\u2013420 (2008)","journal-title":"Manuf. Serv. Oper. Manage."},{"issue":"6","key":"9_CR4","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1023\/B:JOSH.0000046076.75950.0b","volume":"7","author":"EK Burke","year":"2004","unstructured":"Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7(6), 441\u2013499 (2004)","journal-title":"J. Sched."},{"key":"9_CR5","unstructured":"Cotten, A.: Seven steps of effective workforce planning. IBM Center for the Business of Government (2007)"},{"issue":"1","key":"9_CR6","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1287\/serv.2017.0199","volume":"10","author":"M Davis","year":"2018","unstructured":"Davis, M., Lu, Y., Sharma, M., Squillante, M., Zhang, B.: Stochastic optimization models for workforce planning, operations, and risk management. Serv. Sci. 10(1), 40\u201357 (2018)","journal-title":"Serv. Sci."},{"issue":"1","key":"9_CR7","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1007\/s10479-016-2311-4","volume":"253","author":"T De Feyter","year":"2017","unstructured":"De Feyter, T., Guerry, M., et al.: Optimizing cost-effectiveness in a stochastic Markov manpower planning system under control by recruitment. Ann. Oper. Res. 253(1), 117\u2013131 (2017)","journal-title":"Ann. Oper. Res."},{"key":"9_CR8","first-page":"22384","volume":"33","author":"Y Fei","year":"2020","unstructured":"Fei, Y., Yang, Z., Chen, Y., Wang, Z., Xie, Q.: Risk-sensitive reinforcement learning: Near-optimal risk-sample tradeoff in regret. Adv. Neural. Inf. Process. Syst. 33, 22384\u201322395 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"issue":"6","key":"9_CR9","doi-asserted-by":"publisher","first-page":"750","DOI":"10.1287\/mnsc.30.6.750","volume":"30","author":"C Gaimon","year":"1984","unstructured":"Gaimon, C., Thompson, G.: A distributed parameter cohort personnel planning model that uses cross-sectional data. Manage. Sci. 30(6), 750\u2013764 (1984)","journal-title":"Manage. Sci."},{"issue":"8","key":"9_CR10","doi-asserted-by":"publisher","first-page":"1201","DOI":"10.1287\/mnsc.20.8.1201","volume":"20","author":"R Grinold","year":"1974","unstructured":"Grinold, R., Stanford, R.: Optimal control of a graded manpower system. Manage. Sci. 20(8), 1201\u20131216 (1974)","journal-title":"Manage. Sci."},{"key":"9_CR11","doi-asserted-by":"crossref","unstructured":"Heger, J., Voss, T.: Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences. In: 2020 Winter Simulation Conference (WSC), pp. 1608\u20131618 (2020)","DOI":"10.1109\/WSC48552.2020.9383903"},{"key":"9_CR12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10994-022-06143-6","volume":"111","author":"F den Hengst","year":"2022","unstructured":"den Hengst, F., Fran\u00e7ois-Lavet, V., Hoogendoorn, M., van Harmelen, F.: Planning for potential: efficient safe reinforcement learning. Mach. Learn. 111, 1\u201320 (2022)","journal-title":"Mach. Learn."},{"key":"9_CR13","doi-asserted-by":"publisher","first-page":"1042","DOI":"10.1287\/opre.2021.2183","volume":"70","author":"P Jaillet","year":"2021","unstructured":"Jaillet, P., Loke, G.G., Sim, M.: Strategic workforce planning under uncertainty. Oper. Res. 70, 1042\u20131065 (2021)","journal-title":"Oper. Res."},{"issue":"4","key":"9_CR14","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1177\/1548512917704525","volume":"14","author":"V Jnitova","year":"2017","unstructured":"Jnitova, V., Elsawah, S., Ryan, M.: Review of simulation models in military workforce planning and management context. J. Defense Model. Simul. 14(4), 447\u2013463 (2017)","journal-title":"J. Defense Model. Simul."},{"issue":"4","key":"9_CR15","doi-asserted-by":"publisher","first-page":"4","DOI":"10.18564\/jasss.4396","volume":"23","author":"JD Kant","year":"2020","unstructured":"Kant, J.D., Ballot, G., Goudet, O.: WorkSim: an agent-based model of labor markets. J. Artif. Soc. Soc. Simul. 23(4), 4 (2020)","journal-title":"J. Artif. Soc. Soc. Simul."},{"issue":"10","key":"9_CR16","doi-asserted-by":"publisher","first-page":"983","DOI":"10.1057\/jors.1990.151","volume":"41","author":"PP Rao","year":"1990","unstructured":"Rao, P.P.: A dynamic programming approach to determine optimal manpower recruitment policies. J. Oper. Res. Soc. 41(10), 983\u2013988 (1990)","journal-title":"J. Oper. Res. Soc."},{"key":"9_CR17","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1613\/jair.3987","volume":"48","author":"DM Roijers","year":"2013","unstructured":"Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective sequential decision-making. J. Artif. Intell. Res. 48, 67\u2013113 (2013)","journal-title":"J. Artif. Intell. Res."},{"key":"9_CR18","doi-asserted-by":"crossref","unstructured":"Romer, P.: Human capital and growth: theory and evidence (1989)","DOI":"10.3386\/w3173"},{"key":"9_CR19","unstructured":"Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)"},{"issue":"6","key":"9_CR20","doi-asserted-by":"publisher","first-page":"707","DOI":"10.1061\/(ASCE)CO.1943-7862.0000485","volume":"138","author":"C Sing","year":"2012","unstructured":"Sing, C., Love, P., Tam, C.: Stock-flow model for forecasting labor supply. J. Constr. Eng. Manag. 138(6), 707\u2013715 (2012)","journal-title":"J. Constr. Eng. Manag."}],"container-title":["Lecture Notes in Computer Science","Machine Learning, Optimization, and Data Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-25891-6_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,5]],"date-time":"2023-04-05T10:15:41Z","timestamp":1680689741000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-25891-6_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031258909","9783031258916"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-25891-6_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"10 March 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"LOD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Machine Learning, Optimization, and Data Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Certosa di Pontignano","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"lod2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/lod2022.icas.cc\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"226","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"85","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5.6","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}